$p$-Adic quantum mechanics for $p=2$
Teoretičeskaâ i matematičeskaâ fizika, Tome 80 (1989) no. 2, pp. 253-263
Cet article a éte moissonné depuis la source Math-Net.Ru
In the framework of $p$-adic quantum mechanics suggested recently the study of the case $p=2$ is performed. Corresponding Gaussian integrals are calculated and properties of the kernel of the evolution operator are investigated in the case of the harmonic oscillator.
@article{TMF_1989_80_2_a6,
author = {E. I. Zelenov},
title = {$p${-Adic} quantum mechanics for $p=2$},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {253--263},
year = {1989},
volume = {80},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1989_80_2_a6/}
}
E. I. Zelenov. $p$-Adic quantum mechanics for $p=2$. Teoretičeskaâ i matematičeskaâ fizika, Tome 80 (1989) no. 2, pp. 253-263. http://geodesic.mathdoc.fr/item/TMF_1989_80_2_a6/
[1] Vladimirov V. S., Volovich I. V., Commun. Math. Phys., 123:3 (1989), 445–479 | MR
[2] Vladimirov V. S., Volovich I. V., DAN SSSR, 302:2 (1988), 320–323 | MR | Zbl
[3] Vladimirov V. S., UMN, 43:5 (1988), 17–53 | MR | Zbl
[4] Vladimirov V. S., Volovich I. V., Phys. Lett., B211 (1988), 513–516
[5] Borevich Z. I., Shafarevich I. R., Teoriya chisel, Nauka, M., 1985 | MR | Zbl
[6] Gelfand I. M., Graev M. I., Pyatetskii-Shapiro I. I., Teoriya predstavlenii i avtomorfnye funktsii, Nauka, M., 1966 | MR