String with dynamical geometry. Hamiltonian analysis in~conformal gauge
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 80 (1989) no. 2, pp. 239-252
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Canonical formalism is formulated for a string with dynamical geometry in the conformal gauge. It is proved that open strings can only exist if the cosmological constant is nonnegative. It is proved also that the mass of the string is positive definite.
			
            
            
            
          
        
      @article{TMF_1989_80_2_a5,
     author = {M. O. Katanaev},
     title = {String with dynamical geometry. {Hamiltonian} analysis in~conformal gauge},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {239--252},
     publisher = {mathdoc},
     volume = {80},
     number = {2},
     year = {1989},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1989_80_2_a5/}
}
                      
                      
                    M. O. Katanaev. String with dynamical geometry. Hamiltonian analysis in~conformal gauge. Teoretičeskaâ i matematičeskaâ fizika, Tome 80 (1989) no. 2, pp. 239-252. http://geodesic.mathdoc.fr/item/TMF_1989_80_2_a5/
