String with dynamical geometry. Hamiltonian analysis in~conformal gauge
Teoretičeskaâ i matematičeskaâ fizika, Tome 80 (1989) no. 2, pp. 239-252

Voir la notice de l'article provenant de la source Math-Net.Ru

Canonical formalism is formulated for a string with dynamical geometry in the conformal gauge. It is proved that open strings can only exist if the cosmological constant is nonnegative. It is proved also that the mass of the string is positive definite.
@article{TMF_1989_80_2_a5,
     author = {M. O. Katanaev},
     title = {String with dynamical geometry. {Hamiltonian} analysis in~conformal gauge},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {239--252},
     publisher = {mathdoc},
     volume = {80},
     number = {2},
     year = {1989},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1989_80_2_a5/}
}
TY  - JOUR
AU  - M. O. Katanaev
TI  - String with dynamical geometry. Hamiltonian analysis in~conformal gauge
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1989
SP  - 239
EP  - 252
VL  - 80
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1989_80_2_a5/
LA  - ru
ID  - TMF_1989_80_2_a5
ER  - 
%0 Journal Article
%A M. O. Katanaev
%T String with dynamical geometry. Hamiltonian analysis in~conformal gauge
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1989
%P 239-252
%V 80
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1989_80_2_a5/
%G ru
%F TMF_1989_80_2_a5
M. O. Katanaev. String with dynamical geometry. Hamiltonian analysis in~conformal gauge. Teoretičeskaâ i matematičeskaâ fizika, Tome 80 (1989) no. 2, pp. 239-252. http://geodesic.mathdoc.fr/item/TMF_1989_80_2_a5/