Goldstone singularities in the $4-\varepsilon$ expansion of the $\Phi^4$ theory
Teoretičeskaâ i matematičeskaâ fizika, Tome 80 (1989) no. 2, pp. 212-225 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A scheme of resummation of singularities related to the Goldstone singularities is suggested for the series of $4-\varepsilon$ expansions of the Green functions of the $n$-component $\Phi^4$ theory below the critical temperature. Using this scheme it is proved (in the arbitrary order of the $\varepsilon$ expansion) that the scaling functions in the neighbourhood of the critical point have the same asymptotics at small external field and momenta as those predicted by the “hydrodynamic approximation”.
@article{TMF_1989_80_2_a3,
     author = {M. Yu. Nalimov},
     title = {Goldstone singularities in the $4-\varepsilon$ expansion of the $\Phi^4$ theory},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {212--225},
     year = {1989},
     volume = {80},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1989_80_2_a3/}
}
TY  - JOUR
AU  - M. Yu. Nalimov
TI  - Goldstone singularities in the $4-\varepsilon$ expansion of the $\Phi^4$ theory
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1989
SP  - 212
EP  - 225
VL  - 80
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1989_80_2_a3/
LA  - ru
ID  - TMF_1989_80_2_a3
ER  - 
%0 Journal Article
%A M. Yu. Nalimov
%T Goldstone singularities in the $4-\varepsilon$ expansion of the $\Phi^4$ theory
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1989
%P 212-225
%V 80
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1989_80_2_a3/
%G ru
%F TMF_1989_80_2_a3
M. Yu. Nalimov. Goldstone singularities in the $4-\varepsilon$ expansion of the $\Phi^4$ theory. Teoretičeskaâ i matematičeskaâ fizika, Tome 80 (1989) no. 2, pp. 212-225. http://geodesic.mathdoc.fr/item/TMF_1989_80_2_a3/

[1] Patashinskii A. Z., Pokrovskii V. L., ZhETF, 64:4 (1973), 1445–1451

[2] Vaks V. G., Larkin A. I., Pikin S. A., ZhETF, 53:3 (1967), 1089–1106

[3] Brezin E., Wallace D. J., Phys. Rev., B7:5 (1973), 1967–1974 | DOI

[4] Brezin E., Zinn-Justin J., Phys. Rev. Lett., 36:13 (1976), 691–694 | DOI

[5] Brezin E., Wallace D. J., Wilson K. J., Phys. Rev., B7:1 (1973), 232–239 | DOI

[6] Brezin E., Le Guillou J. G., Zinn-Justin J., “Field Theoretical Approach to Critical Phenomena”, Phase Transitions and Critical Phenomena, 6, Academic Press, New York, 1976, 114–203 | MR

[7] Wallace D. J., Zia R. K. P., Phys. Rev., B12:11 (1975), 5340–5342 | DOI

[8] Nelson D. R., Phys. Rev., B13:5 (1976), 2222–2230 | DOI

[9] Schäfer L., Horner H., Z. Phys., B29:3 (1978), 251–263

[10] Nicoll J. F., Phys. Rev., B21:3 (1980), 1124–1132 | DOI | MR

[11] Lawrie I. D., J. Phys., A14:8 (1981), 2489–2502 | MR

[12] Adzhemyan L. Ts., Vasilev A. N., Pismak Yu. M., TMF, 68:3 (1986), 323–337

[13] Adzhemyan L. Ts., Vasilev A. N., Pismak Yu. M., TMF, 74:3 (1988), 360–372 | MR

[14] `t Hooft G., Veltman M., Nucl. Phys., B44:1 (1972), 189–213 | DOI

[15] Bogolyubov N. N., Shirkov D. V., Vvedenie v teoriyu kvantovannykh polei, Nauka, M., 1976 | MR