Dynamical symmetry group of the relativistic Coulomb problem in the quasipotential approach
Teoretičeskaâ i matematičeskaâ fizika, Tome 80 (1989) no. 1, pp. 40-46 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Dynamical symmetry group of the relativistic Coulomb problem in the quasipotential approach is constructed. In the relativistic configurational ${\mathbf r}$-representation the raising and lowering operators for the quantum numbers $n$ and $l$ are found. The radial wave functions corresponding to the discrete spectrum are determined by purely algebraic method.
@article{TMF_1989_80_1_a3,
     author = {Sh. M. Nagiyev},
     title = {Dynamical symmetry group of the relativistic {Coulomb} problem in the quasipotential approach},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {40--46},
     year = {1989},
     volume = {80},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1989_80_1_a3/}
}
TY  - JOUR
AU  - Sh. M. Nagiyev
TI  - Dynamical symmetry group of the relativistic Coulomb problem in the quasipotential approach
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1989
SP  - 40
EP  - 46
VL  - 80
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1989_80_1_a3/
LA  - ru
ID  - TMF_1989_80_1_a3
ER  - 
%0 Journal Article
%A Sh. M. Nagiyev
%T Dynamical symmetry group of the relativistic Coulomb problem in the quasipotential approach
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1989
%P 40-46
%V 80
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1989_80_1_a3/
%G ru
%F TMF_1989_80_1_a3
Sh. M. Nagiyev. Dynamical symmetry group of the relativistic Coulomb problem in the quasipotential approach. Teoretičeskaâ i matematičeskaâ fizika, Tome 80 (1989) no. 1, pp. 40-46. http://geodesic.mathdoc.fr/item/TMF_1989_80_1_a3/

[1] Malkin I. A., Manko V. I., Dinamicheskie simmetrii i kogerentnye sostoyaniya kvantovykh sistem, Nauka, M., 1979 | MR

[2] Barut A., Ronchka R., Teoriya predstavlenii grupp i ee prilozheniya, T. 2, Mir, M., 1980 | MR | Zbl

[3] Freeman M., Mateev M. D., Mir-Kasimov R. M., Nucl. Phys., B12 (1969), 197–215 | DOI

[4] Kadyshevsky V. G., Mir-Kasimov R. M., Skachkov N. B., Nuovo Cim., 55A:2 (1968), 233–257 | DOI

[5] Nagiyev Sh. M., J. Phys. A: Math. Gen., 21 (1988), 2559–2564 | DOI | MR

[6] Malkin I. A., Manko V. I., Pisma v ZhETF, 2:5 (1965), 230–234 ; ЯФ, 3:2 (1966), 372–382 | MR | MR

[7] Nambu Y., Phys. Rev., 160:5 (1967), 1171–1182 | DOI

[8] Barut A. O., Kleinert H., Phys. Rev., 156:5 (1967), 1541–1545 ; 157:5, 1180–1183 ; 160:5, 1149–1151 | DOI | DOI | DOI

[9] Fronsdal C., Phys. Rev., 156:5 (1967), 1653–1677 ; 171:5, 1181–1823 | DOI

[10] Todorov I. T., Fizika vysokikh energii i teoriya elementarnykh chastits, Naukova dumka, Kiev, 1967, 237–257 | MR

[11] Malkin I. A., Manko V. I., YaF, 9:1 (1969), 184–189

[12] Itzykson C., Kadyshevsky V. G., Todorov I. T., Phys. Rev., D1:10 (1970), 2823–2831

[13] Barut A. O., Bornzin J. L., J. Math. Phys., 12:5 (1971), 841 | DOI | MR

[14] Barut A. O., Dynamical groups and generalized symmetries in quantum theory, New Zealand, Chistchurch, 1971 | Zbl

[15] Barut A. O., SIAM J. Appl. Math., 25:2 (1973), 247–259 | DOI | MR | Zbl

[16] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, T. 2, Nauka, M., 1974 | MR

[17] Kadyshevskii V. G., Mir-Kasimov R. M., Skachkov N. B., YaF, 9:1 (1969), 212–223 | MR

[18] Lanik J., Czech. J. Phys., B12 (1969), 1540–1548 | DOI | MR

[19] Dmitriev V. F., Rumer Yu. B., TMF, 5:2 (1970), 276–280 | MR

[20] Schrödinger E., Proc. Roy. Irish. Acad., A46 (1941), 183–206 | MR | Zbl

[21] Infeld L., Hill T. E., Rev. Mod. Phys., 23:1 (1951), 21–68 | DOI | MR | Zbl

[22] Atakishiyev N. M., Mir-Kasimov R. M., Nagiyev Sh. M., Ann. der Phys. (DDR), 42:1 (1985), 25–30 | DOI | MR

[23] Gerry C. C., Silverman S., Phys. Lett., 95A:9 (1983), 481 | DOI | MR

[24] Barut A. O., Böhm A., J. Math. Phys., 11:10 (1970), 2938–2945 | DOI | MR