Relativistic shock waves in the presence of regions with anomalous equation of state
Teoretičeskaâ i matematičeskaâ fizika, Tome 80 (1989) no. 1, pp. 138-149
Cet article a éte moissonné depuis la source Math-Net.Ru
Conditions of the existence of shock waves in relativistic hydrodynamics are found for the case of substance with “variable” thermodynamic properties. Various formulations of the general stability criterion are derived and their equivalence is proved under sufficiently general restrictions on the equation of state.
@article{TMF_1989_80_1_a11,
author = {K. A. Bugaev and M. I. Gorenshtein and V. I. Zhdanov},
title = {Relativistic shock waves in~the presence of~regions with anomalous equation of~state},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {138--149},
year = {1989},
volume = {80},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1989_80_1_a11/}
}
TY - JOUR AU - K. A. Bugaev AU - M. I. Gorenshtein AU - V. I. Zhdanov TI - Relativistic shock waves in the presence of regions with anomalous equation of state JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1989 SP - 138 EP - 149 VL - 80 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_1989_80_1_a11/ LA - ru ID - TMF_1989_80_1_a11 ER -
%0 Journal Article %A K. A. Bugaev %A M. I. Gorenshtein %A V. I. Zhdanov %T Relativistic shock waves in the presence of regions with anomalous equation of state %J Teoretičeskaâ i matematičeskaâ fizika %D 1989 %P 138-149 %V 80 %N 1 %U http://geodesic.mathdoc.fr/item/TMF_1989_80_1_a11/ %G ru %F TMF_1989_80_1_a11
K. A. Bugaev; M. I. Gorenshtein; V. I. Zhdanov. Relativistic shock waves in the presence of regions with anomalous equation of state. Teoretičeskaâ i matematičeskaâ fizika, Tome 80 (1989) no. 1, pp. 138-149. http://geodesic.mathdoc.fr/item/TMF_1989_80_1_a11/
[1] Zeldovich Ya. B., Raizer Yu. P., Fizika udarnykh voln i vysokotemperaturnykh gidrodinamicheskikh yavlenii, Nauka, M., 1966
[2] Landau L. D., Lifshits E. M., Gidrodinamika, Nauka, M., 1986 | MR
[3] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii, Nauka, M., 1978 | MR
[4] Gorenstein M. I., Zhdanov V. I., Z. Phys. C, 34:1 (1987), 79–84 | DOI
[5] Bugaev K. A., Gorenstein M. I., J. Phys. G, 13 (1978), 1231–1238 | DOI
[6] Shikin I. S., DAN SSSR, 142:2 (1962), 296–298