Construction of classical systems of equations and macroscopic asymptotics for the equilibium correlation and Green's functions by means of the nonequilibrium statistical operator method
Teoretičeskaâ i matematičeskaâ fizika, Tome 80 (1989) no. 1, pp. 118-137 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the framework of the NSO method for classical systems a general scheme is suggested for deriving linearised equations for macroscopic variables describing nonequilibrium states and also equations for the equilibrium correlation and Poisson Green functions. Arguments are given showing that the damping of equilibrium fluctuations is due to the linearised equations describing the evolution to equilibrium of corresponding macroscopic variables. A simple and general method is suggested for constructing macroscopic asymptotics for the equilibrium correlation and Poisson Green functions.
@article{TMF_1989_80_1_a10,
     author = {G. O. Balabanyan},
     title = {Construction of~classical systems of~equations and macroscopic asymptotics for the equilibium correlation and {Green's} functions by~means of~the nonequilibrium statistical operator method},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {118--137},
     year = {1989},
     volume = {80},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1989_80_1_a10/}
}
TY  - JOUR
AU  - G. O. Balabanyan
TI  - Construction of classical systems of equations and macroscopic asymptotics for the equilibium correlation and Green's functions by means of the nonequilibrium statistical operator method
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1989
SP  - 118
EP  - 137
VL  - 80
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1989_80_1_a10/
LA  - ru
ID  - TMF_1989_80_1_a10
ER  - 
%0 Journal Article
%A G. O. Balabanyan
%T Construction of classical systems of equations and macroscopic asymptotics for the equilibium correlation and Green's functions by means of the nonequilibrium statistical operator method
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1989
%P 118-137
%V 80
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1989_80_1_a10/
%G ru
%F TMF_1989_80_1_a10
G. O. Balabanyan. Construction of classical systems of equations and macroscopic asymptotics for the equilibium correlation and Green's functions by means of the nonequilibrium statistical operator method. Teoretičeskaâ i matematičeskaâ fizika, Tome 80 (1989) no. 1, pp. 118-137. http://geodesic.mathdoc.fr/item/TMF_1989_80_1_a10/

[1] Zubarev D. N., Neravnovesnaya statisticheskaya termodinamika, Nauka, M., 1971

[2] Zubarev D. N., “Sovremennye metody statisticheskoi teorii neravnovesnykh protsessov”, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 15, VINITI, M., 1980, 131–226 | MR

[3] Zubarev D. N., Tserkovnikov Yu. A., “Metod dvukhvremennykh temperaturnykh funktsii Grina v ravnovesnoi i neravnovesnoi statisticheskoi mekhanike”, Tr. MIAN SSSR. im. V. A. Steklova, 175, No 3, Nauka, M., 1986, 134–177 | MR

[4] Bogolyubov N. N., K voprosu o gidrodinamike sverkhtekuchei zhidkosti, Preprint R-1395, OIYaI, Dubna, 1963; Избранные труды, Т. 3, Наукова думка, Киев, 1971, С. 244–281. | MR

[5] Dzheparov F. S., Krasnikov V. A., TMF, 14:1 (1973), 82–90

[6] Bogolyubov N. N. (ml.), Sadovnikov B. I., Nekotorye voprosy statisticheskoi mekhaniki, Vysshaya shkola, M., 1975 | MR

[7] Adkhamov A. A., Lebedev V. I., Primenenie metoda funktsii Grina v klassicheskoi statisticheskoi mekhanike, Donish, Dushanbe, 1975 | MR

[8] Bogolyubov N. N. (ml.), Kamaeva V. V., Plechko V. N., TMF, 32:1 (1977), 59–69 | MR

[9] Kadanoff L. P., Martin P. S., Ann. Phys., 24:3 (1963), 419–469 | DOI | MR | Zbl

[10] Martin P. S., “Non local transport coefficient and correlation function in statistical mechanics of equilibrium and nonequilibrium”, Statistical Mechanics of equilibrium and nonequilibrium, ed. J. Meixer, North-Holland Publishing Co., Amsterdam, 1965, 100–125 | MR

[11] Forster D., Gidrodinamicheskie fluktuatsii, narushennaya simmetriya i korrelyatsionnye funktsii, Atomizdat, M., 1980

[12] Morozov V. G., TMF, 47:3 (1981), 407–418 | MR

[13] Zubarev D. N., UFN, 71:1 (1960), 71–116 | DOI | MR

[14] Tyablikov S. V., Metody kvantovoi teorii magnetizma, Nauka, M., 1975 | MR

[15] Bonch-Bruevich V. L., Tyablikov S. V., Metod funktsii Grina v statisticheskoi mekhanike, Fizmatgiz, M., 1961 | MR

[16] Tserkovnikov Yu. A., TMF, 49:2 (1981), 219–233 | MR

[17] Tserkovnikov Yu. A., TMF, 50:2 (1982), 261–271 | MR

[18] Tserkovnikov Yu. A., TMF, 63:3 (1985), 440–457 | MR

[19] Zubarev D. N., Tokarchuk M. V., Obobschennaya gidrodinamika ionnykh sistem, Preprint ITF-86-40R, ITF AN USSR, Kiev, 1986

[20] Zubarev D. N., Tokarchuk M. V., TMF, 70:2 (1987), 234–254 | MR

[21] Kalashnikov V. P., TMF, 34:3 (1978), 412–425

[22] Kalashnikov V. P., TMF, 35:1 (1978), 127–138

[23] Kawasaki K., Gunton J. D., Phys. Lett. A, 40A:1 (1972), 35–36 ; Phys. Rev. A, 8A:3 (1973), 2048–2064 | DOI | DOI | MR

[24] Mori H., Progr. Theor. Phys., 33:3 (1965), 423–455 | DOI | MR | Zbl

[25] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1981 | MR

[26] Onsager L., Phys. Rev., 37:2 (1931), 405–421 | DOI

[27] Boon J. P., Yip S., Molecular hydrodynamics, Mc. Graw-Hill Inc., N.-Y., 1980

[28] Götze W., Lücke M., Phys. Rev. A, 11:6 (1975), 2173–2190 | DOI