Symmetry generators in singular theories
Teoretičeskaâ i matematičeskaâ fizika, Tome 79 (1989) no. 3, pp. 359-370 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved that in the singular nondegenerate theories any symmetry of the lagrangian under non-point transformations of lagrangian variables with the open (in the general case) algebra in the hamiltonian approach generates corresponding transformations of canonical variables, the generator of which is the Noether charge with respect to the Dirac brackets. On the surface of all constraints these transformations leave the hamiltonian invariant and the algebra of the Noether charges is closed. As a consequence, it is shown that the nilpotent BRST charge operator always exists in gauge theories of the general form (if possible anomalies are not taken into account).
@article{TMF_1989_79_3_a3,
     author = {P. M. Lavrov and I. V. Tyutin},
     title = {Symmetry generators in~singular theories},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {359--370},
     year = {1989},
     volume = {79},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1989_79_3_a3/}
}
TY  - JOUR
AU  - P. M. Lavrov
AU  - I. V. Tyutin
TI  - Symmetry generators in singular theories
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1989
SP  - 359
EP  - 370
VL  - 79
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1989_79_3_a3/
LA  - ru
ID  - TMF_1989_79_3_a3
ER  - 
%0 Journal Article
%A P. M. Lavrov
%A I. V. Tyutin
%T Symmetry generators in singular theories
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1989
%P 359-370
%V 79
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1989_79_3_a3/
%G ru
%F TMF_1989_79_3_a3
P. M. Lavrov; I. V. Tyutin. Symmetry generators in singular theories. Teoretičeskaâ i matematičeskaâ fizika, Tome 79 (1989) no. 3, pp. 359-370. http://geodesic.mathdoc.fr/item/TMF_1989_79_3_a3/

[1] Gitman D. M., Tyutin I. V., Kanonicheskoe kvantovanie polei so svyazyami, Nauka, M., 1986 | MR | Zbl

[2] Becchi C., Rouet A., Stora R., Commun. Math. Phys., 42 (1975), 127 | DOI | MR

[3] Tyutin I. V., Kalibrovochnaya invariantnost v teorii polya i statisticheskoi fizike v operatornoi formulirovke, Preprint FIAN No 39, FIAN SSSR, M., 1975

[4] Kugo T., Ojima I., Progr. Theor. Phys. Suppl., 66 (1979), 1–130 | DOI | MR

[5] Batalin I. A., Vilkovisky G. A., Phys. Lett., 102B (1981), 27–31 | DOI | MR

[6] Batalin I. A., Vilkovisky G. A., Phys. Rev., D28:10 (1983), 2567–2582 | MR

[7] Batalin I. A., Vilkovisky G. A., Nucl. Phys., B234 (1984), 106–123 | DOI | MR

[8] Dirak P. A. M., Lektsii po kvantovoi mekhanike, Mir, M., 1968

[9] Gitman D. M., Lavrov P. M., Tyutin I. V., Netochechnye zameny peremennykh v osobennykh teoriyakh, Preprint TF SO AN SSSR No 21, Tomskii filial SO AN SSSR, Tomsk, 1987

[10] Di Stefano R., Phys. Lett., 192B:1–2 (1987), 130–134 | DOI

[11] Freedman D. Z., Towusend P. K., Nucl. Phys., B177 (1981), 282 | DOI

[12] Slavnov A. A., Frolov S. A., TMF, 75:2 (1988), 201–211 | MR

[13] De Alwis S. P., Grisaru M. T., Mezincescu L., Phys. Lett., 190B:1–2 (1987), 122–126 | DOI | MR