Gaussian dominance and phase transitions in~systems with continuous symmetry
Teoretičeskaâ i matematičeskaâ fizika, Tome 79 (1989) no. 3, pp. 460-472

Voir la notice de l'article provenant de la source Math-Net.Ru

Within the Fröhlich strategy of the phase transitions theory in systems with continuous symmetry, the existence of nonunique state in the nonideal Bose gas for sufficiently small temperatures is proved. We use the technique of majorizing estimates for the correlation expectations and the holomorphic representation of the functional integral method. The main role in the approach is played by the condition of the Gaussian domination by Fr̈ohlich–Simon–Spencer which we extend to the continuous case under consideration. Equation for the critical temperature and an upper bound for the energy of elementary excitations is derived.
@article{TMF_1989_79_3_a13,
     author = {D. P. Sankovich},
     title = {Gaussian dominance and phase transitions in~systems with continuous symmetry},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {460--472},
     publisher = {mathdoc},
     volume = {79},
     number = {3},
     year = {1989},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1989_79_3_a13/}
}
TY  - JOUR
AU  - D. P. Sankovich
TI  - Gaussian dominance and phase transitions in~systems with continuous symmetry
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1989
SP  - 460
EP  - 472
VL  - 79
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1989_79_3_a13/
LA  - ru
ID  - TMF_1989_79_3_a13
ER  - 
%0 Journal Article
%A D. P. Sankovich
%T Gaussian dominance and phase transitions in~systems with continuous symmetry
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1989
%P 460-472
%V 79
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1989_79_3_a13/
%G ru
%F TMF_1989_79_3_a13
D. P. Sankovich. Gaussian dominance and phase transitions in~systems with continuous symmetry. Teoretičeskaâ i matematičeskaâ fizika, Tome 79 (1989) no. 3, pp. 460-472. http://geodesic.mathdoc.fr/item/TMF_1989_79_3_a13/