Quantization rule for self-consistent field equations with local rapidly decreasing nonlinearity
Teoretičeskaâ i matematičeskaâ fizika, Tome 79 (1989) no. 2, pp. 198-208
Voir la notice de l'article provenant de la source Math-Net.Ru
A modification of the Whitham method for equations with turning points is suggested. The phase jump at the turning point is calculated. The asymptotics of eigen-values for equations which include both local and integral nonlinearity is found.
@article{TMF_1989_79_2_a3,
author = {M. V. Karasev and A. V. Pereskokov},
title = {Quantization rule for self-consistent field equations with local rapidly decreasing nonlinearity},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {198--208},
publisher = {mathdoc},
volume = {79},
number = {2},
year = {1989},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1989_79_2_a3/}
}
TY - JOUR AU - M. V. Karasev AU - A. V. Pereskokov TI - Quantization rule for self-consistent field equations with local rapidly decreasing nonlinearity JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1989 SP - 198 EP - 208 VL - 79 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1989_79_2_a3/ LA - ru ID - TMF_1989_79_2_a3 ER -
%0 Journal Article %A M. V. Karasev %A A. V. Pereskokov %T Quantization rule for self-consistent field equations with local rapidly decreasing nonlinearity %J Teoretičeskaâ i matematičeskaâ fizika %D 1989 %P 198-208 %V 79 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_1989_79_2_a3/ %G ru %F TMF_1989_79_2_a3
M. V. Karasev; A. V. Pereskokov. Quantization rule for self-consistent field equations with local rapidly decreasing nonlinearity. Teoretičeskaâ i matematičeskaâ fizika, Tome 79 (1989) no. 2, pp. 198-208. http://geodesic.mathdoc.fr/item/TMF_1989_79_2_a3/