Quantization rule for self-consistent field equations with local rapidly decreasing nonlinearity
Teoretičeskaâ i matematičeskaâ fizika, Tome 79 (1989) no. 2, pp. 198-208 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A modification of the Whitham method for equations with turning points is suggested. The phase jump at the turning point is calculated. The asymptotics of eigen-values for equations which include both local and integral nonlinearity is found.
@article{TMF_1989_79_2_a3,
     author = {M. V. Karasev and A. V. Pereskokov},
     title = {Quantization rule for self-consistent field equations with local rapidly decreasing nonlinearity},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {198--208},
     year = {1989},
     volume = {79},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1989_79_2_a3/}
}
TY  - JOUR
AU  - M. V. Karasev
AU  - A. V. Pereskokov
TI  - Quantization rule for self-consistent field equations with local rapidly decreasing nonlinearity
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1989
SP  - 198
EP  - 208
VL  - 79
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1989_79_2_a3/
LA  - ru
ID  - TMF_1989_79_2_a3
ER  - 
%0 Journal Article
%A M. V. Karasev
%A A. V. Pereskokov
%T Quantization rule for self-consistent field equations with local rapidly decreasing nonlinearity
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1989
%P 198-208
%V 79
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1989_79_2_a3/
%G ru
%F TMF_1989_79_2_a3
M. V. Karasev; A. V. Pereskokov. Quantization rule for self-consistent field equations with local rapidly decreasing nonlinearity. Teoretičeskaâ i matematičeskaâ fizika, Tome 79 (1989) no. 2, pp. 198-208. http://geodesic.mathdoc.fr/item/TMF_1989_79_2_a3/

[1] Braun Dzh., Dzhekson A., Nuklon-nuklonnye vzaimodeistviya, Atomizdat, M., 1979

[2] Gurevich A. V., Shvartsburg A. B., Nelineinaya teoriya rasprostraneniya radiovoln v ionosfere, Nauka, M., 1973

[3] Akhmanov S. A., Zheludev N. I., Spectroscopy of nonlinear optical activity in crystals., World sci., Singapore, 1984

[4] Gross E. P., Ann. Phys., 99 (1976), 1–29 | DOI | MR

[5] Witten E., Nucl. Phys., B160 (1979), 57–115 | DOI | MR

[6] Maslov V. P., Sovremennye problemy matematiki, 11, VINITI, M., 1978, 153–234

[7] Karasev M. V., Maslov V. P., Sovremennye problemy matematiki, 13, VINITI, M., 1979, 145–267 | MR

[8] Simenog I. V., TMF, 30:3 (1977), 408–414 | MR

[9] Chernykh S. I., TMF, 52:3 (1982), 491–494 | MR

[10] Karasev M. V., TMF, 61:1 (1984), 118–127 | MR | Zbl

[11] Uizem Dzh., Lineinye i nelineinye volny, Mir, M., 1977 | MR

[12] Its A. R., Novokshenov V. Y., The isomonodromic deformation method in the theory of Painleve equation, Lecture notes in mathematics, 1191, Springer-Verlag, Berlin–Heidelberg–New York–Tokyo, 1986 | DOI | MR | Zbl