Quantization rule for self-consistent field equations with local rapidly decreasing nonlinearity
Teoretičeskaâ i matematičeskaâ fizika, Tome 79 (1989) no. 2, pp. 198-208

Voir la notice de l'article provenant de la source Math-Net.Ru

A modification of the Whitham method for equations with turning points is suggested. The phase jump at the turning point is calculated. The asymptotics of eigen-values for equations which include both local and integral nonlinearity is found.
@article{TMF_1989_79_2_a3,
     author = {M. V. Karasev and A. V. Pereskokov},
     title = {Quantization rule for self-consistent field equations with local rapidly decreasing nonlinearity},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {198--208},
     publisher = {mathdoc},
     volume = {79},
     number = {2},
     year = {1989},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1989_79_2_a3/}
}
TY  - JOUR
AU  - M. V. Karasev
AU  - A. V. Pereskokov
TI  - Quantization rule for self-consistent field equations with local rapidly decreasing nonlinearity
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1989
SP  - 198
EP  - 208
VL  - 79
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1989_79_2_a3/
LA  - ru
ID  - TMF_1989_79_2_a3
ER  - 
%0 Journal Article
%A M. V. Karasev
%A A. V. Pereskokov
%T Quantization rule for self-consistent field equations with local rapidly decreasing nonlinearity
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1989
%P 198-208
%V 79
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1989_79_2_a3/
%G ru
%F TMF_1989_79_2_a3
M. V. Karasev; A. V. Pereskokov. Quantization rule for self-consistent field equations with local rapidly decreasing nonlinearity. Teoretičeskaâ i matematičeskaâ fizika, Tome 79 (1989) no. 2, pp. 198-208. http://geodesic.mathdoc.fr/item/TMF_1989_79_2_a3/