Some examples of instantons in sigma models
Teoretičeskaâ i matematičeskaâ fizika, Tome 79 (1989) no. 2, pp. 185-197 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Supersymmetrical sigma-models are considered in which fields are defined on the Riemann surface of the genus $p$ and take values in the Kähler manifold. Some mathematical methods of looking for instantons and their zero modes in such sigma-models are explained.
@article{TMF_1989_79_2_a2,
     author = {Ya. I. Kogan and D. G. Markushevich and A. Yu. Morozov and M. A. Olshanetsky and A. M. Perelomov and A. A. Roslyi},
     title = {Some examples of~instantons in~sigma models},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {185--197},
     year = {1989},
     volume = {79},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1989_79_2_a2/}
}
TY  - JOUR
AU  - Ya. I. Kogan
AU  - D. G. Markushevich
AU  - A. Yu. Morozov
AU  - M. A. Olshanetsky
AU  - A. M. Perelomov
AU  - A. A. Roslyi
TI  - Some examples of instantons in sigma models
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1989
SP  - 185
EP  - 197
VL  - 79
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1989_79_2_a2/
LA  - ru
ID  - TMF_1989_79_2_a2
ER  - 
%0 Journal Article
%A Ya. I. Kogan
%A D. G. Markushevich
%A A. Yu. Morozov
%A M. A. Olshanetsky
%A A. M. Perelomov
%A A. A. Roslyi
%T Some examples of instantons in sigma models
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1989
%P 185-197
%V 79
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1989_79_2_a2/
%G ru
%F TMF_1989_79_2_a2
Ya. I. Kogan; D. G. Markushevich; A. Yu. Morozov; M. A. Olshanetsky; A. M. Perelomov; A. A. Roslyi. Some examples of instantons in sigma models. Teoretičeskaâ i matematičeskaâ fizika, Tome 79 (1989) no. 2, pp. 185-197. http://geodesic.mathdoc.fr/item/TMF_1989_79_2_a2/

[1] Perelomov A. M., Commun. Math. Phys., 63 (1978), 237 | DOI | MR | Zbl

[2] Wen X.-G., Witten E., Phys. Lett., 166B (1986), 397–401 ; Dine M., Seiberg N., Wen X.-G., Witten E., Nucl. Phys., B278 (1986), 769–789 ; Hamidi Sh., Vafa C., Nucl. Phys., B279 (1987), 469–513 ; Dixon L., Friedan D., Martinec E., Shenker St., The conformal Field Theory of Orbifolds, Preprint EFI 86-42, 1986 | DOI | MR | DOI | MR | MR | MR

[3] Griffiths Ph., Harris J., Principles of Algebraic Geometry, John Wiley and Sons, N. Y., 1978 | MR | Zbl

[4] Novikov V., Shifman M., Vainshtein A., Zakharov V., Phys. Lett., 139B (1984), 389–393 | DOI

[5] Calabi E., Ann. Sci. Ec. Norm. Sup., 12 (1979), 269 ; Curtright T., Greedman D., Phys. Lett., B90 (1980), 71–74 ; Alvarez-Gaumé L., Freedman D., Phys. Lett., B94 (1980), 171–173 ; Morozov A., Perelomov A., Nucl. Phys., B271 (1986), 620–652 | DOI | MR | DOI | DOI | DOI