Phase transitions in relativistic models induced by a stochastic potential
Teoretičeskaâ i matematičeskaâ fizika, Tome 79 (1989) no. 1, pp. 49-62 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The vacuum response to an external static scalar and pseudoscalar stochastic field is investigated. A new (stochastic) mechanism of mass generation is suggested for four-dimensional model of interacting massless scalar and fermion fields. The mean density of states of Dirac fermions in the “pseudoscalar white noise” is calculated exactly in two-dimensional space-time. It is shown that the rapidly varying stochastic field enhances the threshold singularity in the density of states and gives rise to the stimulation (increase) of the effective fermion mass.
@article{TMF_1989_79_1_a4,
     author = {I. V. Krive and S. A. Naftulin and E. E. Tuluzova},
     title = {Phase transitions in~relativistic models induced by~a~stochastic potential},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {49--62},
     year = {1989},
     volume = {79},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1989_79_1_a4/}
}
TY  - JOUR
AU  - I. V. Krive
AU  - S. A. Naftulin
AU  - E. E. Tuluzova
TI  - Phase transitions in relativistic models induced by a stochastic potential
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1989
SP  - 49
EP  - 62
VL  - 79
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1989_79_1_a4/
LA  - ru
ID  - TMF_1989_79_1_a4
ER  - 
%0 Journal Article
%A I. V. Krive
%A S. A. Naftulin
%A E. E. Tuluzova
%T Phase transitions in relativistic models induced by a stochastic potential
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1989
%P 49-62
%V 79
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1989_79_1_a4/
%G ru
%F TMF_1989_79_1_a4
I. V. Krive; S. A. Naftulin; E. E. Tuluzova. Phase transitions in relativistic models induced by a stochastic potential. Teoretičeskaâ i matematičeskaâ fizika, Tome 79 (1989) no. 1, pp. 49-62. http://geodesic.mathdoc.fr/item/TMF_1989_79_1_a4/

[1] Olesen P., Nucl. Phys., B200 (1982), 381–390 | DOI

[2] Apenko S. M., Kirzhnits D. A., Lozovik Yu. E., Pisma v ZhETF, 36:5 (1982), 172–174

[3] Simonov Yu. A., Quark propagator and correlators in a confining vacuum, Preprint No 99; Confinement in the ground non-abelian vacuum fields in QCD, Preprint No 188, ITEP, M., 1987

[4] Dosch H. G., Gluon condensate and effective linear potential, Preprint CERN-TH. 4659/87, 1987 | Zbl

[5] Niemi A., Wijewardhana L. C. R., Nucl. Phys. B, 220:2 (1983), 213–222 ; Ishizuka W., Kikuchi J., Phys. Rev. D, 35 (1985), 422–435 | DOI | MR | DOI

[6] Krive I. V., Pastur L. A., Rozhavskii A. S., YaF, 46:4 (1987), 1297–1304 | MR

[7] Matinyan S. G., EChAYa, 16:3 (1985), 522–550 | MR

[8] Lifshits I. M., Gredeskul S. A., Pastur L. A., Vvedenie v teoriyu neuporyadochennykh sistem, Nauka, M., 1982 | MR

[9] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Nauka, M., 1971 | MR

[10] Krive I. V., Pastur L. A., Rozhavskii A. S., YaF, 47:2 (1988), 587–597 | MR

[11] Krive I. V., Linde A. D., Nucl. Phys. B, 117 (1976), 265–268 | DOI

[12] Klyatskin V. I., Stokhasticheskie uravneniya i volny v sluchaino-neodnorodnykh sredakh, Nauka, M., 1980 | MR | Zbl

[13] Ovchinnikov A. A., Erikhman N. S., ZhETF, 73 (1977), 650–661

[14] Shei S. S., Phys. Rev. D, 14 (1976), 535–546 | DOI