Current algebras in the theory of the classical $\mathcal D=2+1$ string with internal degrees of freedom
Teoretičeskaâ i matematičeskaâ fizika, Tome 79 (1989) no. 1, pp. 41-48 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Hamiltonian formalism is constructed for the infinite classical $\mathcal D=2+1$ string with the distributed Majorana spinor field whose components are real numbers. It is shown that the Poisson structure of the model is determined by two central extensions of current algebras which are in the involution.
@article{TMF_1989_79_1_a3,
     author = {S. V. Talalov},
     title = {Current algebras in~the theory of~the classical $\mathcal D=2+1$ string with internal degrees of~freedom},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {41--48},
     year = {1989},
     volume = {79},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1989_79_1_a3/}
}
TY  - JOUR
AU  - S. V. Talalov
TI  - Current algebras in the theory of the classical $\mathcal D=2+1$ string with internal degrees of freedom
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1989
SP  - 41
EP  - 48
VL  - 79
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1989_79_1_a3/
LA  - ru
ID  - TMF_1989_79_1_a3
ER  - 
%0 Journal Article
%A S. V. Talalov
%T Current algebras in the theory of the classical $\mathcal D=2+1$ string with internal degrees of freedom
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1989
%P 41-48
%V 79
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1989_79_1_a3/
%G ru
%F TMF_1989_79_1_a3
S. V. Talalov. Current algebras in the theory of the classical $\mathcal D=2+1$ string with internal degrees of freedom. Teoretičeskaâ i matematičeskaâ fizika, Tome 79 (1989) no. 1, pp. 41-48. http://geodesic.mathdoc.fr/item/TMF_1989_79_1_a3/

[1] Zakharov V. E., Faddeev L. D., Funkts. analiz i ego prilozh., 5:4 (1971), 18–27 | MR | Zbl

[2] Takhtadzhyan L. A., Faddeev L. D., Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | MR | Zbl

[3] Reiman A. G., Semenov-Tyan-Shanskii M. A., DAN SSSR, 251:6 (1980), 1310–1314 | MR

[4] Reshetikhin N. Yu., Faddeev L. D., TMF, 56:3 (1983), 323–343 | MR

[5] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya, Nauka, M., 1979 | MR

[6] Barbashov B. M., Nesterenko V. V., Model relyativistskoi struny v fizike adronov, Energoatomizdat, M., 1987

[7] Schwarz J. H., Phys. Rep., 89C:3 (1982), 223–322 | DOI | MR | Zbl

[8] Sherk D., Geometricheskie idei v fizike, Mir, M., 1983 | MR

[9] Barut A., Ronchka R., Teoriya predstavlenii grupp i ee prilozheniya, T. 1, Mir, M., 1980 | MR | Zbl

[10] Pogrebkov A. K., Talalov S. V., TMF, 70:3 (1987), 342–350 | MR

[11] Talalov S. V., TMF, 71:3 (1987), 357–369 | MR | Zbl

[12] Kulish P. P., Reiman A. G., Zap. nauchn. sem. LOMI, 77, 1978, 124–133 | MR

[13] Magri F., J. Math. Phys., 19:5 (1978), 1156–1162 | DOI | MR | Zbl

[14] Barbashov B. M., Nesterenko V. V., Chervyakov A. M., TMF, 40:1 (1979), 15–27 | MR

[15] Novikov S. P., DAN SSSR, 260:1 (1981), 31–34 | MR

[16] Witten E., Commun. Math. Phys., 92 (1984), 455–472 | DOI | MR | Zbl