Annihilators in infinite-dimensional Grassmann–Banach algebras
Teoretičeskaâ i matematičeskaâ fizika, Tome 79 (1989) no. 1, pp. 30-40
Cet article a éte moissonné depuis la source Math-Net.Ru
A family of infinite-dimensional Grassmann–Banach algebras over a complete normalized field $K$ is considered. It is proved that any element $G$ of the family is an associative supercommutative Banach superalgebra over $K$, i. e. $G=G_0\oplus G_1$ with the zero annihilators $G_0^\perp=G_1^\perp=(G_1^{(k)})^\perp=\{0\}$, $k\geqslant2$.
@article{TMF_1989_79_1_a2,
author = {V. D. Ivashchuk},
title = {Annihilators in~infinite-dimensional {Grassmann{\textendash}Banach} algebras},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {30--40},
year = {1989},
volume = {79},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1989_79_1_a2/}
}
V. D. Ivashchuk. Annihilators in infinite-dimensional Grassmann–Banach algebras. Teoretičeskaâ i matematičeskaâ fizika, Tome 79 (1989) no. 1, pp. 30-40. http://geodesic.mathdoc.fr/item/TMF_1989_79_1_a2/
[1] Volovich I. V., DAN SSSR, 269:3 (1983), 524–527 | MR | Zbl
[2] Vladimirov V. S., Volovich I. V., DAN SSSR, 273:1 (1983), 26–31 | MR | Zbl
[3] Vladimirov V. S., Volovich I. V., TMF, 59:1 (1984), 3–27 | MR | Zbl
[4] Vladimirov V. S., Volovich I. V., TMF, 60:2 (1984), 169–198 | MR | Zbl
[5] Rogers A., J. Math. Phys., 21:6 (1980), 1352–1365 | DOI | MR | Zbl
[6] Burbaki N., Obschaya topologiya, Nauka, M., 1975 | MR
[7] Borevich Z. I., Shafarevich I. R., Teoriya chisel, Nauka, Moskva, 1972 | MR
[8] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1981 | MR
[9] Kuratovskii K., Mostovskii A., Teoriya mnozhestv, Mir, M., 1970 | MR
[10] Burbaki N., Teoriya mnozhestv, Nauka, M., 1965 | MR