Order parameters and the free energy of the three-dimensional ising model below the transition temperature
Teoretičeskaâ i matematičeskaâ fizika, Tome 79 (1989) no. 1, pp. 135-145 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A method is suggested for calculating free energy of the three-dimensional Ising model below the phase transition point. It is shown that the long-wave fluctuations produce the main contribution into the non-analytic part of the free energy. They can be conveniently described by the Gaussian density measure with nonanalytic dependence of the dispersion upon temperature. The order parameter is calculated by means of a self-consistent procedure which makes it possible to obtain both the critical index for the ever age spin moment and the critical amplitude.
@article{TMF_1989_79_1_a12,
     author = {M. P. Kozlovskii and I. R. Yukhnovskii},
     title = {Order parameters and the free energy of~the three-dimensional ising model below the transition temperature},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {135--145},
     year = {1989},
     volume = {79},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1989_79_1_a12/}
}
TY  - JOUR
AU  - M. P. Kozlovskii
AU  - I. R. Yukhnovskii
TI  - Order parameters and the free energy of the three-dimensional ising model below the transition temperature
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1989
SP  - 135
EP  - 145
VL  - 79
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1989_79_1_a12/
LA  - ru
ID  - TMF_1989_79_1_a12
ER  - 
%0 Journal Article
%A M. P. Kozlovskii
%A I. R. Yukhnovskii
%T Order parameters and the free energy of the three-dimensional ising model below the transition temperature
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1989
%P 135-145
%V 79
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1989_79_1_a12/
%G ru
%F TMF_1989_79_1_a12
M. P. Kozlovskii; I. R. Yukhnovskii. Order parameters and the free energy of the three-dimensional ising model below the transition temperature. Teoretičeskaâ i matematičeskaâ fizika, Tome 79 (1989) no. 1, pp. 135-145. http://geodesic.mathdoc.fr/item/TMF_1989_79_1_a12/

[1] Vilson K., Kogut Dzh., Renormalizatsionnaya gruppa i $\varepsilon$-razlozhenie, Mir, M., 1975

[2] Ma Sh., Sovremennaya teoriya kriticheskikh yavlenii, Mir, M., 1980

[3] Brezin E., Wallace D. J., Wilson K. G., Phys. Rev. B, 7:1 (1973), 232–338 | DOI

[4] Stenli G., Fazovye perekhody i kriticheskie yavleniya, Mir, M., 1973

[5] Yukhnovskii I. R., Kozlovskii M. P., Kolomiets V. A., UFZh, 27:6 (1982), 925–930 | MR

[6] Yukhnovskii I. R., Solution of the three-dimensional Ising model in the temperature range below critical point, Preprint ITP-85E, In-t teor. fiziki AN USSR, Kiev, 1983 | MR

[7] Yukhnovskii I. R., Fazovye perekhody vtorogo roda. Metod kollektivnykh peremennykh, Naukova dumka, K., 1985 | MR

[8] Kozlovskii M. P., Ilnitskii Ya. N., Pylyuk I. V., Svobodnaya energiya i drugie termodinamicheskie funktsii trekhmernoi modeli Izinga nizhe tochki fazovogo perekhoda, Preprint ITF-107R, In-t teor. fiziki AN USSR, Kiev, 1985

[9] Kozlovsky M. P., Pylyuk I. V., Free energy and other thermodynamical functions above second-order phase transition point, Preprint ITP-23E, In-t teor. fiziki AN USSR, Kiev, 1985

[10] Kozlovskii M. P., Pylyuk I. V., Raschet termodinamicheskikh funktsii vblizi tochki fazovogo perekhoda v priblizhenii shesternoi bazisnoi mery, Preprint ITF-9R, In-t teor. fiziki AN USSR, Kiev, 1987

[11] Yukhnovskii I. R., Kozlousky M. P., Shport M. A., Free energy entropy and heat capacity in the critical region, Preprint ITP-44E, In-t teor. fiziki AN USSR, Kiev, 1984

[12] Kozlovskii M. P., DAN USSR. Ser. A, 1984, no. 10, 58–61

[13] Baker G. Jr., Nickel B. G., Meiron D., Phys. Rev. B, 17:3 (1978), 1365–1374 | DOI

[14] Chase S. I., Kaufman M., Phys. Rev. B, 33:1 (1985), 239–244 | DOI | MR