Evolution operator of the Bogolyubov gradient diffusion hierarchy in the mean field limit
Teoretičeskaâ i matematičeskaâ fizika, Tome 79 (1989) no. 1, pp. 127-134 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Evolution operator and weak solutions on a finite time interval in the space of sequences of measurable bounded functions of the Bogoliubov gradient diffusion hierarchy are constructed in the mean field limit.
@article{TMF_1989_79_1_a11,
     author = {V. I. Skripnik},
     title = {Evolution operator of~the {Bogolyubov} gradient diffusion hierarchy in~the mean field limit},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {127--134},
     year = {1989},
     volume = {79},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1989_79_1_a11/}
}
TY  - JOUR
AU  - V. I. Skripnik
TI  - Evolution operator of the Bogolyubov gradient diffusion hierarchy in the mean field limit
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1989
SP  - 127
EP  - 134
VL  - 79
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1989_79_1_a11/
LA  - ru
ID  - TMF_1989_79_1_a11
ER  - 
%0 Journal Article
%A V. I. Skripnik
%T Evolution operator of the Bogolyubov gradient diffusion hierarchy in the mean field limit
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1989
%P 127-134
%V 79
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1989_79_1_a11/
%G ru
%F TMF_1989_79_1_a11
V. I. Skripnik. Evolution operator of the Bogolyubov gradient diffusion hierarchy in the mean field limit. Teoretičeskaâ i matematičeskaâ fizika, Tome 79 (1989) no. 1, pp. 127-134. http://geodesic.mathdoc.fr/item/TMF_1989_79_1_a11/

[1] Chandrasekar S., Stokhasticheskie problemy v fizike i astronomii, IL, M., 1949

[2] Streltsova E. A., UMZh, 11:1 (1959), 83–92 | MR

[3] Gurevich B. M., Oseledets V. I., Itogi nauki i tekhniki. VINITI. Teoriya veroyatnostei, 14, VINITI, M., 1977, 5–39

[4] Spohn H., Rev. Mod. Phys., 52:3 (1980), 569–616 | DOI | MR

[5] Dobrushin R. L., Sinai Ya. G., Sukhov Yu. M., Itogi nauki i tekhniki. VINITI. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 2, VINITI, M., 1985, 235–284 | MR

[6] Petrina D. Ya., Gerasimenko V. I., Malyshev P. V., Matematicheskie osnovy klassicheskoi statisticheskoi mekhaniki, Naukova dumka, Kiev, 1985 | MR | Zbl

[7] Pastur L. A., TMF, 18:2 (1974), 233–242 | MR

[8] Zagrebnov V. A., Korrelyatsionnye uravneniya dlya klassicheskikh nepreryvnykh sistem: resheniya v konechnom ob'eme pri nepustykh granichnykh usloviyakh, Preprint R5-80-458, OIYaI, Dubna, 1980

[9] Ryuel D., Statisticheskaya mekhanika. Strogie rezultaty, Mir, M., 1971

[10] Ginibre J., J. Math. Phys., 6:2 (1965), 238–251 | DOI | MR | Zbl

[11] Skripnik V. I., TMF, 69:1 (1986), 128–141 | MR

[12] Skrypnik W. I., J. Stat. Phys., 35:5/6 (1984), 587–612 | DOI | MR

[13] Skripnik V. I., TMF, 58:3 (1984), 398–420 | MR

[14] Skripnik V. I., TMF, 76:1 (1988), 100–117 | MR

[15] Skrypnik W. I., Integrable solutions of the hierarchy of the BBGKY type for Brownian particles in the mean-field limit, Preprint DIAS STP-87-56, Inst. Adv. Stud., Dublin, 1987 | MR

[16] Skorokhod A. V., Stokhasticheskie uravneniya dlya slozhnykh sistem, Nauka, M., 1983 | MR

[17] Lang R., Z. Wahr. v. Geb., 39 (1977), 277–299 | DOI | MR | Zbl

[18] Fritz J., Commun. Math. Phys., 86 (1982), 363–373 | DOI | MR | Zbl

[19] Rost H., Hydrodynamik gekoppelter diffusionen. Fluctuationen im Gleichgewicht, Heidelberg preprint, 1982 | MR

[20] Chueshov I. D., TMF, 67:2 (1986), 304–308 | MR