Interaction of finite solitons for equations of Born–Infeld type
Teoretičeskaâ i matematičeskaâ fizika, Tome 79 (1989) no. 1, pp. 16-29 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A class of quasilinear second order partial differential equations with two independent variables is constructed which is in a certain sense a generalization of the Born–Infeld equation. In hyperbolic region all the equations of this class can be reduced to the same canonical system written down in terms of the Riemann invariants. For the class mentioned the Cauchy problem and the problem of interaction of plane finite solitary waves are solved. It is shown that any equation of the class can be transformed into any other equation of the class by means of the Backlund transformation.
@article{TMF_1989_79_1_a1,
     author = {O. F. Men'shikh},
     title = {Interaction of~finite solitons for equations {of~Born{\textendash}Infeld} type},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {16--29},
     year = {1989},
     volume = {79},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1989_79_1_a1/}
}
TY  - JOUR
AU  - O. F. Men'shikh
TI  - Interaction of finite solitons for equations of Born–Infeld type
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1989
SP  - 16
EP  - 29
VL  - 79
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1989_79_1_a1/
LA  - ru
ID  - TMF_1989_79_1_a1
ER  - 
%0 Journal Article
%A O. F. Men'shikh
%T Interaction of finite solitons for equations of Born–Infeld type
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1989
%P 16-29
%V 79
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1989_79_1_a1/
%G ru
%F TMF_1989_79_1_a1
O. F. Men'shikh. Interaction of finite solitons for equations of Born–Infeld type. Teoretičeskaâ i matematičeskaâ fizika, Tome 79 (1989) no. 1, pp. 16-29. http://geodesic.mathdoc.fr/item/TMF_1989_79_1_a1/

[1] Barbashov B. M., Chernikov N. A., ZhETF, 50:5 (1966), 1296–1308 | MR

[2] Barbashov B. M., Chernikov N. A., ZhETF, 51:2(8) (1966), 658–668

[3] Born M., Infeld L., Proc. Roy. Soc., A144 (1934), 425–451 | DOI

[4] Uizem Dzh., Lineinye i nelineinye volny, Mir, M., 1977 | MR

[5] Blokhintsev D. I., Orlov V. V., ZhETF, 26:5(11) (1953), 513–526

[6] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii, Nauka, M., 1978 | MR

[7] Yanenko N. N., UMN, 10:2 (1955), 195–202 | MR | Zbl

[8] Norden A. P., Teoriya poverkhnostei, GITTL, M., 1956

[9] Gursa E., Kurs matematicheskogo analiza, T. III, ch. 1, GTTI, M.–L., 1933 | MR

[10] Menshikh O. F., Differents. uravneniya, 22:8 (1986), 1410–1416 | MR | Zbl

[11] Menshikh O. F., Izv. vuzov. Matematika, 1972, no. 4(119), 84–92

[12] Erugin N. P., Smirnov M. M., Differents. uravneniya, 17:5 (1981), 853–866 | MR

[13] Ibragimov N. Kh., Gruppy preobrazovanii v matematicheskoi fizike, Nauka, M., 1983 | MR

[14] Menshikh O. F., Ob odnom obobschenii uravneniya Borna–Infelda, Deponirovano v VINITI, No 7920-V86. Dep., VINITI, M., 1986

[15] Menshikh O. F., Ob odnom obobschenii uravnenii minimalnykh poverkhnostei, Deponirovano v VINITI, No 1947-V87. Dep., VINITI, M., 1987