Lorentz covariant tempered distributions in two-dimensional space-time
Teoretičeskaâ i matematičeskaâ fizika, Tome 79 (1989) no. 1, pp. 3-15
Cet article a éte moissonné depuis la source Math-Net.Ru
$n$-point Lorentz covariant tempered distributions are described for two-dimensional space-time.
@article{TMF_1989_79_1_a0,
author = {Yu. M. Zinoviev},
title = {Lorentz covariant tempered distributions in~two-dimensional space-time},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {3--15},
year = {1989},
volume = {79},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1989_79_1_a0/}
}
Yu. M. Zinoviev. Lorentz covariant tempered distributions in two-dimensional space-time. Teoretičeskaâ i matematičeskaâ fizika, Tome 79 (1989) no. 1, pp. 3-15. http://geodesic.mathdoc.fr/item/TMF_1989_79_1_a0/
[1] Methée P.-D., Commun. math. helv., 28:3 (1954), 225–269 | DOI | MR | Zbl
[2] Gårding L., Lions J. L., Nuovo Cimento, Suppl., 14 (1959), 9–66 | DOI | MR
[3] Zinoviev Yu. M., Commun. Math. Phys., 47:1 (1976), 33–42 | DOI | MR | Zbl
[4] Zharinov V. V., TMF, 9:2 (1971), 232–239 | MR
[5] Helgason S., Acta Math., 113:3–4 (1965), 153–180 | DOI | MR | Zbl
[6] Khermander L., Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, T. 1, Mir, M., 1986 | MR
[7] Harish-Chandra, Amer. J. Math., 86:2 (1964), 271–309 | DOI | MR | Zbl
[8] Gelfand I. M., Shilov G. E., Obobschennye funktsii i deistviya nad nimi, Fizmatgiz, M., 1959 | MR
[9] Zemanyan A. G., Integralnye preobrazovaniya obobschennykh funktsii, Nauka, M., 1974 | MR