Quantum mechanics of systems with a gauge group
Teoretičeskaâ i matematičeskaâ fizika, Tome 78 (1989) no. 3, pp. 411-421 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In constructing descriptions of gauge models of elementary particle physics in terms of invariant variables restrictions for configuration and phase space of these variables arise. These restrictions were not taken into account in formulations of the models on the basis of continual integral. It is shown by the example of mechanical models with arbitrary gauge group how the Hamiltonian continual integral should be modified when the structure of the configuration and phase spaces is modified. Physical interpretation of this phenomenon is suggested. The result is obtained on the basis of the Dirac scheme for the quantization of systems with constraints and is equivalent to this scheme.
@article{TMF_1989_78_3_a9,
     author = {S. V. Shabanov},
     title = {Quantum mechanics of~systems with a~gauge group},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {411--421},
     year = {1989},
     volume = {78},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1989_78_3_a9/}
}
TY  - JOUR
AU  - S. V. Shabanov
TI  - Quantum mechanics of systems with a gauge group
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1989
SP  - 411
EP  - 421
VL  - 78
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1989_78_3_a9/
LA  - ru
ID  - TMF_1989_78_3_a9
ER  - 
%0 Journal Article
%A S. V. Shabanov
%T Quantum mechanics of systems with a gauge group
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1989
%P 411-421
%V 78
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1989_78_3_a9/
%G ru
%F TMF_1989_78_3_a9
S. V. Shabanov. Quantum mechanics of systems with a gauge group. Teoretičeskaâ i matematičeskaâ fizika, Tome 78 (1989) no. 3, pp. 411-421. http://geodesic.mathdoc.fr/item/TMF_1989_78_3_a9/

[1] Dirak P. A. M., Lektsii po kvantovoi mekhanike, Mir, M., 1968

[2] De Witt B. S., Phys. Rev., 162:5 (1967). 1195–1239 | DOI

[3] Gribov V. N., Nucl. Phys., 139B:1/2 (1978), 1–19 | DOI | MR

[4] Singer I. M., Commun. Math. Phys., 60:1 (1978), 7–12 | DOI | MR | Zbl

[5] Goldstone J., Jackiw R., Phys. Lett., 74B:1–2 (1978), 81–84 | DOI

[6] Izergin A. G., Korepin V. E., Semenov-Tyan-Shanskii M. A., Faddeev L. D., TMF, 38:1 (1979), 3–14 | MR

[7] Simonov Yu. A., YaF, 41:6 (1985), 1601–1610 | MR

[8] Ilieva N. P., Nguen Suan Khan, Pervushin V. N., YaF, 45:4 (1987), 1169–1176 | MR

[9] Prokhorov L. V., YaF, 35 (1982), 229–241 | MR | Zbl

[10] Uitteker E. T., Vatson Dzh. N., Kurs sovremennogo analiza, T. 2, Fizmatgiz, M., 1963

[11] Prokhorov L. V., Shabanov S. V., Vestn. LGU. Ser. 4, 1988, no. 4, 68–71 ; Динамические системы с калибровочной группой, Депонировано в ВИНИТИ No 7961-В87. Деп., ВИНИТИ, М., 1987 | MR | Zbl

[12] Matinyan S. G., Savvidi G. K., Ter-Arutyunyan-Savvidi A. G., ZhETF, 80:3 (1981), 830–838 | MR

[13] Zhelobenko D. P., Kompaktnye gruppy Li i ikh predstavleniya, Nauka, M., 1970 | MR | Zbl

[14] Dirak P. A. M., Printsipy kvantovoi mekhaniki, Fizmatgiz, M., 1960 | MR

[15] Feinman R., Khibs A., Kvantovaya mekhanika i integraly po traektoriyam, Mir, M., 1968 | MR

[16] Prokhorov L. V., Shabanov S. V., Vestn. LGU. Ser. 4, 1988, no. 11, 8–14 | MR | Zbl

[17] Zhelobenko D. P., Lektsii po teorii grupp Li, OIYaI, Dubna, 1965

[18] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, T. 2, Nauka, M., 1974 | MR