Quantum field renormalization group in the theory of stochastic Langmuir turbulence
Teoretičeskaâ i matematičeskaâ fizika, Tome 78 (1989) no. 3, pp. 368-383 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Quantum field theory renormalization group is used for analysing the Langmuir stochastic turbulence of plasma described by the Zakharov equations [1] with random noises. Existence of the dissipative scaling critical regime is proved, for which all the critical exponents are nontrivial and are calculated in the framework of the $4-\varepsilon$ expansion up to $\varepsilon^2$. An explicit expression is obtained for the scaling asymptotics of the longitudinal dielectric permeability $\varepsilon_\parallel(\omega,k)$ in the neighbourhood of a “critical point” $\varepsilon_\parallel(\omega_e,0)=0$ ($\omega_e$ is the Langmuir frequency). The expression implies, in particular, that the usual dispersion law of the Langmuir waves $\omega-\omega_l\sim k^2$ is substitutted for small $k$ by the law $\omega-\omega_l\sim k^{2-\gamma_a}$ in which the exponent $\gamma_a$ is known up to $\varepsilon^2$.
@article{TMF_1989_78_3_a5,
     author = {L. Ts. Adzhemyan and A. N. Vasil'ev and M. Gnatich and Yu. M. Pis'mak},
     title = {Quantum field renormalization group in~the theory of~stochastic {Langmuir} turbulence},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {368--383},
     year = {1989},
     volume = {78},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1989_78_3_a5/}
}
TY  - JOUR
AU  - L. Ts. Adzhemyan
AU  - A. N. Vasil'ev
AU  - M. Gnatich
AU  - Yu. M. Pis'mak
TI  - Quantum field renormalization group in the theory of stochastic Langmuir turbulence
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1989
SP  - 368
EP  - 383
VL  - 78
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1989_78_3_a5/
LA  - ru
ID  - TMF_1989_78_3_a5
ER  - 
%0 Journal Article
%A L. Ts. Adzhemyan
%A A. N. Vasil'ev
%A M. Gnatich
%A Yu. M. Pis'mak
%T Quantum field renormalization group in the theory of stochastic Langmuir turbulence
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1989
%P 368-383
%V 78
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1989_78_3_a5/
%G ru
%F TMF_1989_78_3_a5
L. Ts. Adzhemyan; A. N. Vasil'ev; M. Gnatich; Yu. M. Pis'mak. Quantum field renormalization group in the theory of stochastic Langmuir turbulence. Teoretičeskaâ i matematičeskaâ fizika, Tome 78 (1989) no. 3, pp. 368-383. http://geodesic.mathdoc.fr/item/TMF_1989_78_3_a5/

[1] Zakharov V. E., ZhETF, 62 (1972), 1745–1759

[2] Ma Sh., Sovremennaya teoriya kriticheskikh yavlenii, Mir, M., 1980

[3] De Dominicis C., Peliti L., Phys. Rev., B18 (1978), 353–376 | DOI

[4] De Dominicis C., Martin P. C., Phys. Rev., A19 (1979), 419–421 | DOI

[5] Adzhemyan L. Ts., Vasilev A. N., Pismak Yu. M., TMF, 57:2 (1983), 268–281 | MR | Zbl

[6] Adzhemyan L. Ts., Vasilev A. N., Gnatich M., TMF, 64:2 (1985), 196–207 | Zbl

[7] Pelletier G., J. Plasma Phys., 24 (1980), 421–443 | DOI

[8] Bausch R., Jaussen H. K., Wagner H., Z. Physik, B24 (1976), 113–127 | DOI

[9] De Dominicis C., J. de Physique, 37 (1976), 247–253 | DOI

[10] 't Hooft G., Nucl. Phys., B61 (1973), 455–460 | DOI

[11] Antonov N. V., Vasilev A. N., TMF, 60:1, 59–71 | MR

[12] Lifshits E. M., Pitaevskii L. P., Fizicheskaya kinetika, Nauka, M., 1979, § 23. | MR | Zbl

[13] Dyachenko A. I., Zakharov V. E., Rubenchik A. I., Sagdeev R. Z., Shvets V. F., Pisma v ZhETF, 44:11, 504–507