String operator formalism and functional integral in~the holomorphic representation
Teoretičeskaâ i matematičeskaâ fizika, Tome 78 (1989) no. 3, pp. 475-479
Voir la notice de l'article provenant de la source Math-Net.Ru
Connection between the continual integral over open Riemann surfaces [1] and theoperator formalism on closed Riemann surfaces [2] is discussed. States of the operator formalism are the holomorphic representation of the continual integral.
@article{TMF_1989_78_3_a16,
author = {A. S. Losev and A. Yu. Morozov and A. A. Roslyi and S. L. Shatashvili},
title = {String operator formalism and functional integral in~the holomorphic representation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {475--479},
publisher = {mathdoc},
volume = {78},
number = {3},
year = {1989},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1989_78_3_a16/}
}
TY - JOUR AU - A. S. Losev AU - A. Yu. Morozov AU - A. A. Roslyi AU - S. L. Shatashvili TI - String operator formalism and functional integral in~the holomorphic representation JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1989 SP - 475 EP - 479 VL - 78 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1989_78_3_a16/ LA - ru ID - TMF_1989_78_3_a16 ER -
%0 Journal Article %A A. S. Losev %A A. Yu. Morozov %A A. A. Roslyi %A S. L. Shatashvili %T String operator formalism and functional integral in~the holomorphic representation %J Teoretičeskaâ i matematičeskaâ fizika %D 1989 %P 475-479 %V 78 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_1989_78_3_a16/ %G ru %F TMF_1989_78_3_a16
A. S. Losev; A. Yu. Morozov; A. A. Roslyi; S. L. Shatashvili. String operator formalism and functional integral in~the holomorphic representation. Teoretičeskaâ i matematičeskaâ fizika, Tome 78 (1989) no. 3, pp. 475-479. http://geodesic.mathdoc.fr/item/TMF_1989_78_3_a16/