String operator formalism and functional integral in~the holomorphic representation
Teoretičeskaâ i matematičeskaâ fizika, Tome 78 (1989) no. 3, pp. 475-479

Voir la notice de l'article provenant de la source Math-Net.Ru

Connection between the continual integral over open Riemann surfaces [1] and theoperator formalism on closed Riemann surfaces [2] is discussed. States of the operator formalism are the holomorphic representation of the continual integral.
@article{TMF_1989_78_3_a16,
     author = {A. S. Losev and A. Yu. Morozov and A. A. Roslyi and S. L. Shatashvili},
     title = {String operator formalism and functional integral in~the holomorphic representation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {475--479},
     publisher = {mathdoc},
     volume = {78},
     number = {3},
     year = {1989},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1989_78_3_a16/}
}
TY  - JOUR
AU  - A. S. Losev
AU  - A. Yu. Morozov
AU  - A. A. Roslyi
AU  - S. L. Shatashvili
TI  - String operator formalism and functional integral in~the holomorphic representation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1989
SP  - 475
EP  - 479
VL  - 78
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1989_78_3_a16/
LA  - ru
ID  - TMF_1989_78_3_a16
ER  - 
%0 Journal Article
%A A. S. Losev
%A A. Yu. Morozov
%A A. A. Roslyi
%A S. L. Shatashvili
%T String operator formalism and functional integral in~the holomorphic representation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1989
%P 475-479
%V 78
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1989_78_3_a16/
%G ru
%F TMF_1989_78_3_a16
A. S. Losev; A. Yu. Morozov; A. A. Roslyi; S. L. Shatashvili. String operator formalism and functional integral in~the holomorphic representation. Teoretičeskaâ i matematičeskaâ fizika, Tome 78 (1989) no. 3, pp. 475-479. http://geodesic.mathdoc.fr/item/TMF_1989_78_3_a16/