Ultraviolet finiteness of~nonlinear two-dimensional sigma models on~affine-metric manifolds
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 78 (1989) no. 3, pp. 471-474
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Two-loop counterterms are calculated in the nonlinear two-dimensional bosonic sigma model for which the target-space is an arbitrary affine-metric manifold. Some examples of nonflat target-manifolds resulting in ultraviolet-finite sigma models are exhibited.
			
            
            
            
          
        
      @article{TMF_1989_78_3_a15,
     author = {V. V. Belokurov and V. E. Tarasov},
     title = {Ultraviolet finiteness of~nonlinear two-dimensional sigma models on~affine-metric manifolds},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {471--474},
     publisher = {mathdoc},
     volume = {78},
     number = {3},
     year = {1989},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1989_78_3_a15/}
}
                      
                      
                    TY - JOUR AU - V. V. Belokurov AU - V. E. Tarasov TI - Ultraviolet finiteness of~nonlinear two-dimensional sigma models on~affine-metric manifolds JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1989 SP - 471 EP - 474 VL - 78 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1989_78_3_a15/ LA - ru ID - TMF_1989_78_3_a15 ER -
%0 Journal Article %A V. V. Belokurov %A V. E. Tarasov %T Ultraviolet finiteness of~nonlinear two-dimensional sigma models on~affine-metric manifolds %J Teoretičeskaâ i matematičeskaâ fizika %D 1989 %P 471-474 %V 78 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_1989_78_3_a15/ %G ru %F TMF_1989_78_3_a15
V. V. Belokurov; V. E. Tarasov. Ultraviolet finiteness of~nonlinear two-dimensional sigma models on~affine-metric manifolds. Teoretičeskaâ i matematičeskaâ fizika, Tome 78 (1989) no. 3, pp. 471-474. http://geodesic.mathdoc.fr/item/TMF_1989_78_3_a15/
