Semigroup of projective transformations for averaging the Green's function of quasione-dimensional disordered systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 78 (1989) no. 3, pp. 466-470
Cet article a éte moissonné depuis la source Math-Net.Ru
Semigroup of projective transformations for weakly interacting chains is suggested. The transition from one element of the semigroup to the next one is performed by means of increasing the size of reducing blocks within which the exact averaging of the Green function is made. The results of evaluations of the electron spectrum of the model of quasi-one-dimensional binary alloy with the diagonal disorder are presented. They demonstrate the rapid convergence of the method and the principal features of the statedensity due to increasing of the number of chains.
@article{TMF_1989_78_3_a14,
author = {L. V. Zhuravskii and I. D. Mikhailov},
title = {Semigroup of~projective transformations for averaging the {Green's} function of~quasione-dimensional disordered systems},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {466--470},
year = {1989},
volume = {78},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1989_78_3_a14/}
}
TY - JOUR AU - L. V. Zhuravskii AU - I. D. Mikhailov TI - Semigroup of projective transformations for averaging the Green's function of quasione-dimensional disordered systems JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1989 SP - 466 EP - 470 VL - 78 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_1989_78_3_a14/ LA - ru ID - TMF_1989_78_3_a14 ER -
%0 Journal Article %A L. V. Zhuravskii %A I. D. Mikhailov %T Semigroup of projective transformations for averaging the Green's function of quasione-dimensional disordered systems %J Teoretičeskaâ i matematičeskaâ fizika %D 1989 %P 466-470 %V 78 %N 3 %U http://geodesic.mathdoc.fr/item/TMF_1989_78_3_a14/ %G ru %F TMF_1989_78_3_a14
L. V. Zhuravskii; I. D. Mikhailov. Semigroup of projective transformations for averaging the Green's function of quasione-dimensional disordered systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 78 (1989) no. 3, pp. 466-470. http://geodesic.mathdoc.fr/item/TMF_1989_78_3_a14/
[1] Goncalves da Silva G. E. T., Koiller Belita, Solid State Commun., 40:3 (1981), 215–219 | DOI | MR
[2] Robbins Mark O., Koiller Belita, Phys. Rev. B, 27:12 (1983), 7703–7715 | DOI | MR
[3] Hwang M., Podloucky R., Gonis A., Freeman A., Phys. Rev. B, 33:2 (1986), 765–771 | DOI
[4] Liu Youyan, Chao K. A., Phys. Rev. B, 33:2 (1986), 1010–1014 | DOI
[5] Mikhailov I. D., Zhuravskii L. V., Teor. i eksperim. khimiya, 1987, no. 3, 322–329
[6] Mikhailov I. D., FMM, 32:6 (1971), 1141–1144
[7] Hubbard J., Phys. Rev. B, 19:4 (1979), 1828–1839 | DOI | MR
[8] Dean P., Proc. Roy. Soc. A, 254 (1960), 507–521 | DOI | MR