@article{TMF_1989_78_3_a12,
author = {R. V. Konoplich},
title = {Zeta-function method in~field theory at~finite temperature},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {444--457},
year = {1989},
volume = {78},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1989_78_3_a12/}
}
R. V. Konoplich. Zeta-function method in field theory at finite temperature. Teoretičeskaâ i matematičeskaâ fizika, Tome 78 (1989) no. 3, pp. 444-457. http://geodesic.mathdoc.fr/item/TMF_1989_78_3_a12/
[1] Kirzhnits D. A., Pisma v ZhETF, 15:6 (1972), 745–748
[2] Kirzhnits D. A., Linde A. D., ZhETF, 67:4 (1974), 1263–1275
[3] Weinberg S., Phys. Rev., D9:12 (1974), 3357–3378
[4] Dolan L., Jackiw R., Phys. Rev., D9:12 (1974), 3320–3341 | MR
[5] Nielsen H. B., Olesen P., Nucl. Phys., R61:1 (1973), 45–61 | DOI
[6] S. Khoking, V. Izrael (red.), Obschaya teoriya otnositelnosti, Mir, M., 1983
[7] Birrel N., Devis P., Kvantovannye polya v iskrivlennom prostranstve-vremeni, Mir, M., 1984 | MR
[8] Bollini C. G., Giambiagi J., Phys. Lett., 134:6 (1984), 436–438 | DOI | MR
[9] Actor A., Nucl. Phys., B265:3 (1986), 689–719 | DOI | MR
[10] Weldon H. A., Nucl. Phys., B270:1 (1986), 79–91 | DOI | MR
[11] Kirzhnits D. A., Linde A. D., Ann. Phys., 101 (1976), 195 | DOI
[12] Johnston D., Z. Phys., C31:1 (1986), 129–134 | MR
[13] Niemi A. J., Semenoff G. W., Nucl. Phys., B230:1 (1984), 181–221 | DOI | MR
[14] Belavin A. A., Polyakov A. M., Pisma v ZhETF, 22:10 (1975), 503–505
[15] Aragao de Carvalho C. et al., Nucl. Phys., B265:1 (1986), 45–64 | DOI
[16] Aragao de Carvalho C. et al., Phys. Rev., D31:6 (1985), 1411–1417
[17] Aragao de Carvalho C. et al., Phys. Rev., D32:12 (1985), 3256–3260
[18] Grinsparg P., Nucl. Phys., B170:3 (1980), 388–408 | DOI
[19] Plunien G., Muller B., Greiner W., Phys. Rep., 134:2–3 (1986), 87–193 | DOI | MR