Nonasymptotic form of the recursion relations of the three-dimensional Ising model
Teoretičeskaâ i matematičeskaâ fizika, Tome 78 (1989) no. 3, pp. 422-433 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Approximate recurrence relations (RR) in the three-dimensional Ising model are obtained in the form of rapidly convergent series. The representation of RR in the form of nonasymptotical series is related to rejecting the traditional perturbation theory based on the Gaussian measure density. Using the RR obtained, value of the critical exponent of the correlation length $\nu$ is calculated. It is shown that if higher nongaussian basic measures are used then the difference form of the RR implies independence of the critical exponent $\nu$ of $s$ for $s>2$ ($s$ is the parameter of the layer structure of the phase space). The results obtained make it possible to obtain explicit expressions for thermodynamic functions in the neighbourhood of the phase transition point.
@article{TMF_1989_78_3_a10,
     author = {M. P. Kozlovskii},
     title = {Nonasymptotic form of~the recursion relations of~the three-dimensional {Ising} model},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {422--433},
     year = {1989},
     volume = {78},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1989_78_3_a10/}
}
TY  - JOUR
AU  - M. P. Kozlovskii
TI  - Nonasymptotic form of the recursion relations of the three-dimensional Ising model
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1989
SP  - 422
EP  - 433
VL  - 78
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1989_78_3_a10/
LA  - ru
ID  - TMF_1989_78_3_a10
ER  - 
%0 Journal Article
%A M. P. Kozlovskii
%T Nonasymptotic form of the recursion relations of the three-dimensional Ising model
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1989
%P 422-433
%V 78
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1989_78_3_a10/
%G ru
%F TMF_1989_78_3_a10
M. P. Kozlovskii. Nonasymptotic form of the recursion relations of the three-dimensional Ising model. Teoretičeskaâ i matematičeskaâ fizika, Tome 78 (1989) no. 3, pp. 422-433. http://geodesic.mathdoc.fr/item/TMF_1989_78_3_a10/

[1] Yukhnovskii I. R., Fazovye perekhody vtorogo roda. Metod kollektivnykh peremennykh, Naukova dumka, Kiev, 1985 | MR

[2] Yukhnovskii I. R., TMF, 36:3 (1978), 373–399

[3] Vilson K., Kogut Dzh., Renormalizatsionnaya gruppa i $\varepsilon$-razlozhenie, Mir, M., 1975

[4] Yukhnovskii I. R., Vakarchuk I. A., Rudavskii Yu. K., TMF, 50:2 (1982), 313–320 | MR

[5] Ginzburg S. L., ZhETF, 68:1 (1975), 273–286

[6] Baker G. A., Jr., Nickel B. G., Merion D. I., Phys. Rev. B, 17:3 (1977), 1365–1374 | DOI

[7] Abramovits M., Stigan I. (red.), Spravochnik po spetsialnym funktsiyam, Nauka, M., 1979 | MR

[8] Kozlovskii M. P., DAN USSR. Ser. A, 1984, no. 10, 58–61

[9] Yukhnovskii I. R., Kozlovskii M. P., Kolomiets V. A., UFZh, 27:6 (1982), 925–930 | MR

[10] Kozlovskii M. P., Pylyuk I. V., Svobodnaya energiya i drugie termodinamicheskie funktsii vblizi tochki fazovogo perekhoda vtorogo roda, Preprint ITF-85-23E, ITF AN USSR, Kiev, 1985

[11] Kozlovskii M. P., DAN USSR. Ser. A, 1984, no. 10, 58–61

[12] Yukhnovskii I. R., Kozlovskii M. P., UFZh, 22:7 (1977), 1124–1134

[13] Kozlovskii M. P., Kriticheskie svoistva modeli Izinga. Model $\rho^6$. Obschie rekurrentnye sootnosheniya, Preprint ITF-82-104R, ITF AN USSR, Kiev, 1982

[14] Pylyuk I. V., Kozlovskii M. P., Issledovanie modeli Izinga s ispolzovaniem negaussovykh bazisnykh mer, Preprint ITF-87-31R, ITF AN USSR, Kiev, 1987

[15] Moore M. A., Jasnow D., Wortis M., Phys. Rev. Lett., 22:18 (1969), 940–943 | DOI

[16] Als-Nielsen J., “Neutron scattering and spatial correlation near the critical point”, Phase transitions and critical phenomena, 5a, eds. C. Domb, M. S. Green, Academic Press Inc., New York, 1975, 87–164 | MR