Analog of~the Carleman formula in~the future tube
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 78 (1989) no. 3, pp. 330-334
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			An analogue of the Carleman formula reconstructing values of the function F(z)
such that $\frac{F(z)}{[(z++{\mathbf i})^2]^{4/p}}\in H^p(\tau^+)$, holomorphic in the tube domain over the future light cone $\tau^+\subset\mathbb C^4$, by given values of $F(z)$ on a set $L$ of positive measure which lies on the distinguished boundary of the domain $\tau^+$, i. e. $L\subset\mathbb R^4$, $m_4(L)>0$, is obtained.
			
            
            
            
          
        
      @article{TMF_1989_78_3_a1,
     author = {T. N. Nikitina},
     title = {Analog of~the {Carleman} formula in~the future tube},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {330--334},
     publisher = {mathdoc},
     volume = {78},
     number = {3},
     year = {1989},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1989_78_3_a1/}
}
                      
                      
                    T. N. Nikitina. Analog of~the Carleman formula in~the future tube. Teoretičeskaâ i matematičeskaâ fizika, Tome 78 (1989) no. 3, pp. 330-334. http://geodesic.mathdoc.fr/item/TMF_1989_78_3_a1/
