Exterior axisymmetric solution for a~rotating charged body in~the relativistic theory of~gravitation
Teoretičeskaâ i matematičeskaâ fizika, Tome 78 (1989) no. 2, pp. 305-313

Voir la notice de l'article provenant de la source Math-Net.Ru

An exact solution of the complete united system of equations of the relativistic theory of gravity and the Maxwell equations is found for a rotating electrically charged body in the axial-symmetric case. It is shown that in the neighbourhood of horizon there exist both gravitational and electrical (for bodies with the opposite sign charges) slowing down due to this mechanism charged probe bodies fall down on horizon infinitely long without being rolled around it.
@article{TMF_1989_78_2_a13,
     author = {P. V. Karabut and Yu. V. Chugreev},
     title = {Exterior axisymmetric solution for a~rotating charged body in~the relativistic theory of~gravitation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {305--313},
     publisher = {mathdoc},
     volume = {78},
     number = {2},
     year = {1989},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1989_78_2_a13/}
}
TY  - JOUR
AU  - P. V. Karabut
AU  - Yu. V. Chugreev
TI  - Exterior axisymmetric solution for a~rotating charged body in~the relativistic theory of~gravitation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1989
SP  - 305
EP  - 313
VL  - 78
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1989_78_2_a13/
LA  - ru
ID  - TMF_1989_78_2_a13
ER  - 
%0 Journal Article
%A P. V. Karabut
%A Yu. V. Chugreev
%T Exterior axisymmetric solution for a~rotating charged body in~the relativistic theory of~gravitation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1989
%P 305-313
%V 78
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1989_78_2_a13/
%G ru
%F TMF_1989_78_2_a13
P. V. Karabut; Yu. V. Chugreev. Exterior axisymmetric solution for a~rotating charged body in~the relativistic theory of~gravitation. Teoretičeskaâ i matematičeskaâ fizika, Tome 78 (1989) no. 2, pp. 305-313. http://geodesic.mathdoc.fr/item/TMF_1989_78_2_a13/