System of three-wave resonant interaction and $P$-type equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 78 (1989) no. 1, pp. 22-34 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Conditions of the existence of rational and one-parametrical families of solutions are obtained for the sixth Painleve equation. New integrability conditions in terms of the elliptic functions or superpositions of the elliptic and hypergeometrical functions and their derivatives are pointed out. With the help of these results exact classes of automodel solutions are constructed for a system of three-wave resonant interaction.
@article{TMF_1989_78_1_a2,
     author = {V. I. Gromak and V. V. Tsegel'nik},
     title = {System of~three-wave resonant interaction and $P$-type equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {22--34},
     year = {1989},
     volume = {78},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1989_78_1_a2/}
}
TY  - JOUR
AU  - V. I. Gromak
AU  - V. V. Tsegel'nik
TI  - System of three-wave resonant interaction and $P$-type equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1989
SP  - 22
EP  - 34
VL  - 78
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1989_78_1_a2/
LA  - ru
ID  - TMF_1989_78_1_a2
ER  - 
%0 Journal Article
%A V. I. Gromak
%A V. V. Tsegel'nik
%T System of three-wave resonant interaction and $P$-type equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1989
%P 22-34
%V 78
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1989_78_1_a2/
%G ru
%F TMF_1989_78_1_a2
V. I. Gromak; V. V. Tsegel'nik. System of three-wave resonant interaction and $P$-type equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 78 (1989) no. 1, pp. 22-34. http://geodesic.mathdoc.fr/item/TMF_1989_78_1_a2/

[1] Ablowitz M. J., Segur H., Phys. Rev. Lett., 38:20 (1977), 1103–1106 | DOI | MR

[2] Ablowitz M. J., Ramani A., Segur H., Lett. Nuov. Cim., 23:9 (1978), 333–338 | DOI | MR

[3] Ablowitz M. J., Ramani A., Segur H., J. Math. Phys., 21:4 (1980), 715–721 ; 5, 1006–1015 | DOI | MR | Zbl | MR | Zbl

[4] Ablovits S. A., Sigur Kh., Solitony i metod obratnoi zadachi, Mir, M., 1987 | MR

[5] Zakharov V. E., Manakov S. V., ZhETF, 69:5 (1975), 1654–1673 | MR

[6] Kalodzhero F., Degasperis A., Spektralnye preobrazovaniya i solitony, Mir, M., 1985 | MR

[7] Fokas A. S., Yortsos Y. C., Lett. Nuov. Cim., 30:17 (1981), 539–544 | DOI | MR

[8] Lukashevich N. A., Differents. uravneniya, 8:8 (1972), 1404–1408 | MR | Zbl

[9] Lukashevich N. A., Yablonskii A. I., Differents. uravneniya, 3:3 (1967), 520–523 | MR | Zbl

[10] Gromak V. I., Lukashevich N. A., Differents. uravneniya, 18:3 (1982), 419–429 | MR | Zbl

[11] Kamke E., Spravochnik po obyknovennym differentsialnym uravneniyam, Nauka, M., 1976 | MR

[12] Blandin J., Pons R., Marcilhacy G., Lett. Nuov. Cim., 38:17 (1983), 561–567 | DOI | MR

[13] Tsegelnik V. V., Doklady AN BSSR, 29:6 (1985), 497–500 | MR | Zbl

[14] Ains E. L., Obyknovennye differentsialnye uravneniya, GNTIU, Kharkov, 1939 | MR

[15] Fokas A. S., Leo R. A., Martina L., Soliani G., Phys. Lett., 115A:7 (1986), 323–332 | MR

[16] Leo R. A., Martina L., Soliani G., Tondo G., Progr. Theor. Phys., 76:4 (1986), 739–751 | DOI | MR

[17] Novokshenov V. Yu., Funkts. analiz i ego prilozh., 18:3 (1984), 90–91 | MR | Zbl

[18] Gromak V. I., Tsegelnik V. V., TMF, 55:2 (1983), 189–196 | MR | Zbl