Finite-gap solutions of Abelian Toda chain of genus 4 and 5 in elliptic functions
Teoretičeskaâ i matematičeskaâ fizika, Tome 78 (1989) no. 1, pp. 11-21 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A reduction theorem is formulated and proved. Smooth real solutions of the abelian Toda lattice of the genus 4 and 5 are obtained in terms of the elliptic functions. In terms of the $g$-dimensional theta-functions the solutions of the genus $2g$ and $2g+1$ are constructed for the discrete Peierls–Fröhlich model in the absence of intramolecular deformation.
@article{TMF_1989_78_1_a1,
     author = {A. O. Smirnov},
     title = {Finite-gap solutions {of~Abelian} {Toda} chain of~genus~4 and 5 in~elliptic functions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {11--21},
     year = {1989},
     volume = {78},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1989_78_1_a1/}
}
TY  - JOUR
AU  - A. O. Smirnov
TI  - Finite-gap solutions of Abelian Toda chain of genus 4 and 5 in elliptic functions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1989
SP  - 11
EP  - 21
VL  - 78
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1989_78_1_a1/
LA  - ru
ID  - TMF_1989_78_1_a1
ER  - 
%0 Journal Article
%A A. O. Smirnov
%T Finite-gap solutions of Abelian Toda chain of genus 4 and 5 in elliptic functions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1989
%P 11-21
%V 78
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1989_78_1_a1/
%G ru
%F TMF_1989_78_1_a1
A. O. Smirnov. Finite-gap solutions of Abelian Toda chain of genus 4 and 5 in elliptic functions. Teoretičeskaâ i matematičeskaâ fizika, Tome 78 (1989) no. 1, pp. 11-21. http://geodesic.mathdoc.fr/item/TMF_1989_78_1_a1/

[1] Brazovskii S. A., Dzyaloshinskii I. E., Krichever I. M., ZhETF, 83:1 (1982), 389–415 | MR

[2] Dzyaloshinskii I. E., Krichever I. M., ZhETF, 85:11 (1983), 1771–1789

[3] Krichever I. M., Itogi nauki i tekhniki. Sovremennye problemy matematiki, 23, VINITI, M., 1983, 79–136 | MR

[4] Krichever I. M., UMN, 33:4 (1978), 215–216 | MR | Zbl

[5] Zakharov V. E., Manakov S. V., Novikov S. P., Pitaevskii L. P., Teoriya solitonov: metod obratnoi zadachi, Nauka, M., 1980 | MR

[6] Brazovskii S. A., Matveenko S. I., ZhETF, 81:10 (1981), 1542–1551

[7] Brazovskii S. A., Kirova N. N., Matveenko S. I., ZhETF, 86:2 (1984), 743–757

[8] Matveenko S. I., ZhETF, 86:5 (1984), 1803–1817 | MR

[9] Belokolos E. D., Bobenko A. I., Matveev V. B., Enolskii V. Z., UMN, 41:2 (1986), 3–42 | MR | Zbl

[10] Krichever I. M., Funkts. analiz i ego prilozh., 14:4 (1980), 45–54 | MR | Zbl

[11] Babich M. V., Bobenko A. I., Matveev V. B., Izv. AN SSSR, ser. Matematika, 49:3 (1985), 511–529 | MR | Zbl

[12] Belokolos E. D., Enolskii V. Z., TMF, 53:2 (1982), 271–282 | MR | Zbl

[13] Kuribayashi A., Bull. Facul. Sci. and Eng. Chuo Univ., 15 (1972), 1–13 | MR | Zbl

[14] Schiller J., Michigan Math. J., 15:3 (1968), 283–287 | DOI | MR | Zbl

[15] Zverovich E. I., UMN, 26:1 (1971), 113–179 | MR | Zbl

[16] Dubrovin B. A., Geometriya abelevykh mnogoobrazii i rimanovykh poverkhnostei i nelineinye uravneniya, Dis. ... dokt. fiz.-matem. nauk, MGU, M., 1984

[17] Igusa J., Grund. Math. Wiss., 194, Springer, 1972 | MR | Zbl

[18] Matveev V. B., Smirnov A. O., DAN SSSR, 293:1 (1987), 78–82 | MR | Zbl

[19] Smirnov A. O., Matem. sbornik, 133:3 (1987), 382–391 | MR | Zbl

[20] Dubrovin B. A., Matveev V. B., Novikov S. P., UMN, 31:1 (1976), 55–136 | MR | Zbl

[21] Fay J. D., Lect. Notes in Math., 352, Springer, 1973 | DOI | MR | Zbl

[22] Bobenko A. I., Funkts. analiz i ego prilozh., 19:1 (1985), 6–19 | MR | Zbl