Autocorrelation function of a Heisenberg paramagnet in the approximation of a self-consistent fluctuating field
Teoretičeskaâ i matematičeskaâ fizika, Tome 77 (1988) no. 3, pp. 426-439 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A nonlinear integrodifferential equation is derived for the autocorrelation function of the Heisenberg paramagnet at high temperatures in the limit of an infinite-dimensional lattice. The solution of this equation on the plane of the complex time variable is investigated. A majorant and a minorant for the autocorrelation function on the imaginary axis are found, together with the nearest singular points. It is shown that at high frequencies the spectral density decreases exponentially. The damping constant and the pre-exponential factor are determined by the method of moments. The moments to tenth order are calculated.
@article{TMF_1988_77_3_a9,
     author = {V. E. Zobov},
     title = {Autocorrelation function of a {Heisenberg} paramagnet in the approximation of a self-consistent fluctuating field},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {426--439},
     year = {1988},
     volume = {77},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1988_77_3_a9/}
}
TY  - JOUR
AU  - V. E. Zobov
TI  - Autocorrelation function of a Heisenberg paramagnet in the approximation of a self-consistent fluctuating field
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1988
SP  - 426
EP  - 439
VL  - 77
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1988_77_3_a9/
LA  - ru
ID  - TMF_1988_77_3_a9
ER  - 
%0 Journal Article
%A V. E. Zobov
%T Autocorrelation function of a Heisenberg paramagnet in the approximation of a self-consistent fluctuating field
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1988
%P 426-439
%V 77
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1988_77_3_a9/
%G ru
%F TMF_1988_77_3_a9
V. E. Zobov. Autocorrelation function of a Heisenberg paramagnet in the approximation of a self-consistent fluctuating field. Teoretičeskaâ i matematičeskaâ fizika, Tome 77 (1988) no. 3, pp. 426-439. http://geodesic.mathdoc.fr/item/TMF_1988_77_3_a9/

[1] Résibois P., De Leener M., Phys. Rev., 152:1 (1966), 305–325 | DOI

[2] Blume M., Hubbard J., Phys. Rev., B1:9 (1970), 3815–3830 | DOI

[3] Winter J.-M., Ann. Phys. (Fr), 6:3 (1971), 167–186 | DOI

[4] Myles C. W., Fedders P. A., Phys. Rev., B9:11 (1974), 4872–4881 | DOI

[5] Fisher M. E., Gaunt D. S., Phys. Rev., 133:1A (1964), 224–239 | DOI | Zbl

[6] Fisher M., Priroda kriticheskogo sostoyaniya, Mir, M., 1968

[7] Braut R., Fazovye perekhody, Mir, M., 1967

[8] Lundin A. A., Zobov V. E., J. Magn. Reson., 26:2 (1977), 229–235

[9] Tserkovnikov Yu. A., TMF, 11:3 (1972), 385–402

[10] Friedman H. L., Blum L., Yue G., J. Chem. Phys., 65:11 (1976), 4396–4408 | DOI

[11] Van Kampen N. G., Physica, 74:2 (1974), 215–247 | DOI | MR

[12] Fox R. F., Phys. Rep., C48:3 (1978), 179–283 | DOI | MR

[13] Kamke E., Spravochnik po obyknovennym differentsialnym uravneniyam, Nauka, M., 1976 | MR

[14] Golubev V. V., Lektsii po analiticheskoi teorii differentsialnykh uravnenii, M.–L., 1950 | MR

[15] Ablovits M., Sigur Kh., Solitony i metod obratnoi zadachi, Mir, M., 1987, Gl. 3. | MR

[16] Zobov V. E., Vysokochastotnye asimptotiki avtokorrelyatsionnoi funktsii geizenbergovskogo paramagnetika, Preprint No 386 F, IF SO AN SSSR, Krasnoyarsk, 1986

[17] Migdal A. B., Kachestvennye metody v kvantovoi teorii, Nauka, M., 1975 | MR

[18] Walstedt R. E., Phys. Rev., B5:9 (1972), 3782–3787 | DOI

[19] Landesman A., Ann. Phys. (Fr), 8:1 (1973), 53–79 | DOI

[20] Cusumano C., Troup G. J., Phys. stat. sol. (b), 65:2 (1974), 655–663 | DOI

[21] Kubo R., Toyabe T., Magnetic Resonance and Relaxation, ed. Blinc R., North-Holland, Amsterdam, 1967, 810–823

[22] Morita T., J. Math. Phys., 12:10 (1971), 2062–2069 | DOI | MR