Critical properties of completely integrable spin models in quasicrystals
Teoretičeskaâ i matematičeskaâ fizika, Tome 77 (1988) no. 3, pp. 402-411
Voir la notice de l'article provenant de la source Math-Net.Ru
It is shown that the critical exponents of completely integrable spin models in quasicrystals are equal to the critical exponents of the corresponding models in crystals. A classification of the thermodynamic phases of the eight-vertex model and the binary correlation function of
the Ising model in a quasicrystal are given.
@article{TMF_1988_77_3_a7,
author = {N. V. Antonov and V. E. Korepin},
title = {Critical properties of completely integrable spin models in quasicrystals},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {402--411},
publisher = {mathdoc},
volume = {77},
number = {3},
year = {1988},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1988_77_3_a7/}
}
TY - JOUR AU - N. V. Antonov AU - V. E. Korepin TI - Critical properties of completely integrable spin models in quasicrystals JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1988 SP - 402 EP - 411 VL - 77 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1988_77_3_a7/ LA - ru ID - TMF_1988_77_3_a7 ER -
N. V. Antonov; V. E. Korepin. Critical properties of completely integrable spin models in quasicrystals. Teoretičeskaâ i matematičeskaâ fizika, Tome 77 (1988) no. 3, pp. 402-411. http://geodesic.mathdoc.fr/item/TMF_1988_77_3_a7/