Spherical limit of $n$-vector correlations
Teoretičeskaâ i matematičeskaâ fizika, Tome 77 (1988) no. 3, pp. 460-471
Voir la notice de l'article provenant de la source Math-Net.Ru
It is shown that for any summable translationally invariant interaction
the correlation functions of any order of the classical Heisenberg model
($n$-vector model) as $n\to\infty$ and for any fixed constant temperature $T$
converge to the corresponding correlation functions of the Berlin–Kac
spherical model. A simple proof of the equality of the free energies
of these models in the limit $n\to\infty$ is obtained in the process. The
form that the result will take in the case without translational
invariance is indicated.
@article{TMF_1988_77_3_a12,
author = {M. V. Shcherbina},
title = {Spherical limit of $n$-vector correlations},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {460--471},
publisher = {mathdoc},
volume = {77},
number = {3},
year = {1988},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1988_77_3_a12/}
}
M. V. Shcherbina. Spherical limit of $n$-vector correlations. Teoretičeskaâ i matematičeskaâ fizika, Tome 77 (1988) no. 3, pp. 460-471. http://geodesic.mathdoc.fr/item/TMF_1988_77_3_a12/