Spherical limit of $n$-vector correlations
Teoretičeskaâ i matematičeskaâ fizika, Tome 77 (1988) no. 3, pp. 460-471 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that for any summable translationally invariant interaction the correlation functions of any order of the classical Heisenberg model ($n$-vector model) as $n\to\infty$ and for any fixed constant temperature $T$ converge to the corresponding correlation functions of the Berlin–Kac spherical model. A simple proof of the equality of the free energies of these models in the limit $n\to\infty$ is obtained in the process. The form that the result will take in the case without translational invariance is indicated.
@article{TMF_1988_77_3_a12,
     author = {M. V. Shcherbina},
     title = {Spherical limit of $n$-vector correlations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {460--471},
     year = {1988},
     volume = {77},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1988_77_3_a12/}
}
TY  - JOUR
AU  - M. V. Shcherbina
TI  - Spherical limit of $n$-vector correlations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1988
SP  - 460
EP  - 471
VL  - 77
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1988_77_3_a12/
LA  - ru
ID  - TMF_1988_77_3_a12
ER  - 
%0 Journal Article
%A M. V. Shcherbina
%T Spherical limit of $n$-vector correlations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1988
%P 460-471
%V 77
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1988_77_3_a12/
%G ru
%F TMF_1988_77_3_a12
M. V. Shcherbina. Spherical limit of $n$-vector correlations. Teoretičeskaâ i matematičeskaâ fizika, Tome 77 (1988) no. 3, pp. 460-471. http://geodesic.mathdoc.fr/item/TMF_1988_77_3_a12/

[1] Berlin T., Kac M., Phys. Rev., 86:1 (1952), 121–125 | MR

[2] Stanly H., Phys. Rev., 176:3 (1968), 718–721 | DOI

[3] Kac M., Thompson C., Physica Norvegica, 5:3 (1971), 163–168 | MR

[4] Knops H., J. Math. Phys., 14:12 (1973), 1918–1920 | DOI | MR

[5] Pearce P., Thompson C., J. Stat. Phys., 17:4 (1977), 189–196 | DOI | MR

[6] Kupiainen A., Commun. Math. Phys., 73:3 (1980), 273–294 | DOI | MR

[7] Fröhlich I., Simon B., Spenser T., Commun. Math. Phys., 50:1 (1976), 79–95 | DOI | MR

[8] Bogolyubov N. N. (ml.), Metod issledovaniya modelnykh gamiltonianov, Nauka, M., 1974 | MR

[9] Levis H., Wannier G., Phys. Rev., 88:3 (1952), 682–683

[10] Yan C., Wannier G., J. Math. Phys., 6:11 (1965), 1833–1864 | DOI | MR

[11] Pastur L., J. Stat. Phys., 27:1 (1982), 119–151 | DOI | MR

[12] Hornreich R., Schuster H., Phys. Rev. B, 26 (1982), 3929–3934 | DOI

[13] Theumann W., Fontanari F., J. Stat. Phys., 45:1/2 (1986), 99–111 | DOI | MR