Spherical limit of $n$-vector correlations
Teoretičeskaâ i matematičeskaâ fizika, Tome 77 (1988) no. 3, pp. 460-471

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that for any summable translationally invariant interaction the correlation functions of any order of the classical Heisenberg model ($n$-vector model) as $n\to\infty$ and for any fixed constant temperature $T$ converge to the corresponding correlation functions of the Berlin–Kac spherical model. A simple proof of the equality of the free energies of these models in the limit $n\to\infty$ is obtained in the process. The form that the result will take in the case without translational invariance is indicated.
@article{TMF_1988_77_3_a12,
     author = {M. V. Shcherbina},
     title = {Spherical limit of $n$-vector correlations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {460--471},
     publisher = {mathdoc},
     volume = {77},
     number = {3},
     year = {1988},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1988_77_3_a12/}
}
TY  - JOUR
AU  - M. V. Shcherbina
TI  - Spherical limit of $n$-vector correlations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1988
SP  - 460
EP  - 471
VL  - 77
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1988_77_3_a12/
LA  - ru
ID  - TMF_1988_77_3_a12
ER  - 
%0 Journal Article
%A M. V. Shcherbina
%T Spherical limit of $n$-vector correlations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1988
%P 460-471
%V 77
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1988_77_3_a12/
%G ru
%F TMF_1988_77_3_a12
M. V. Shcherbina. Spherical limit of $n$-vector correlations. Teoretičeskaâ i matematičeskaâ fizika, Tome 77 (1988) no. 3, pp. 460-471. http://geodesic.mathdoc.fr/item/TMF_1988_77_3_a12/