Theory of rotational polaron states of a diatomic impurity molecule in an atomic crystal
Teoretičeskaâ i matematičeskaâ fizika, Tome 77 (1988) no. 2, pp. 234-246 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Rotational polaron states of a diatomic substitutional impurity in an atomic lattice are analyzed in the framework of a consistent quantummechanical approach in the limits of strong, weak, and intermediate coupling. Calculations are made of the contributions to the free energy of the system due to the renormalization of the rotational constant of a braked rotator and tunnel splitting of the librational energy levels. It is shown that there is a temperature region in which there are important corrections to the thermodynamic functions associated with radiative friction exerted on the braked rotator by the phononsubsystem.
@article{TMF_1988_77_2_a7,
     author = {T. N. Antsygina and V. A. Slyusarev},
     title = {Theory of rotational polaron states of a~diatomic impurity molecule in an atomic crystal},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {234--246},
     year = {1988},
     volume = {77},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1988_77_2_a7/}
}
TY  - JOUR
AU  - T. N. Antsygina
AU  - V. A. Slyusarev
TI  - Theory of rotational polaron states of a diatomic impurity molecule in an atomic crystal
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1988
SP  - 234
EP  - 246
VL  - 77
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1988_77_2_a7/
LA  - ru
ID  - TMF_1988_77_2_a7
ER  - 
%0 Journal Article
%A T. N. Antsygina
%A V. A. Slyusarev
%T Theory of rotational polaron states of a diatomic impurity molecule in an atomic crystal
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1988
%P 234-246
%V 77
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1988_77_2_a7/
%G ru
%F TMF_1988_77_2_a7
T. N. Antsygina; V. A. Slyusarev. Theory of rotational polaron states of a diatomic impurity molecule in an atomic crystal. Teoretičeskaâ i matematičeskaâ fizika, Tome 77 (1988) no. 2, pp. 234-246. http://geodesic.mathdoc.fr/item/TMF_1988_77_2_a7/

[1] Manzhelii V. G., Kosobutskaya E. A., Sumarokov V. V., Aleksandrovskii A. N., Freiman Yu. A., Popov V. A., Konstantinov V. A., FNT, 12:2 (1986), 151–171

[2] Manz J., J. Amer. Chem. Soc., 102:6 (1980), 1801–1806 | DOI

[3] Yu. A. Firsov (red.), Polyarony, Nauka, M., 1975 | Zbl

[4] B. I. Verkin, A. F. Prikhotko (red.), Kriokristally, Naukova dumka, Kiev, 1983

[5] Pekar S. I., Issledovaniya po elektronnoi teorii kristallov, GITTL, M.–L., 1951

[6] Landau L. D., Pekar S. I., V kn.: Landau L. D., Sobranie trudov, T. 2, Nauka, M., 1969, 47–53 | MR

[7] Feinman R., Khibs A., Kvantovaya mekhanika i integraly po traektoriyam, Mir, M., 1968 | MR

[8] Lee T. D., Low F. E., Pines D., Phys. Rev., 90:2 (1953), 297–302 | DOI | MR | Zbl

[9] Schwinger J., J. Math. Phys., 2:3 (1961), 407–432 | DOI | MR | Zbl

[10] Kagan Yu. M., Iosilevskii Ya. A., ZhETF, 45:3 (1963), 819–821

[11] Polyakov A. M., Phys. Lett., B59:1 (1975), 79–82 | DOI | MR

[12] Kosterlitz J. M., Phys. Rev. Lett., 37 (1976), 1577–1579 | DOI

[13] Landau L. D., Lifshits E. M., Kvantovaya mekhanika, Nauka, M., 1974 | MR