Ricci-flat compactifications in superstring theory and Coxeter automorphisms. I
Teoretičeskaâ i matematičeskaâ fizika, Tome 77 (1988) no. 2, pp. 212-223 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A class of vacuum configurations in superstring theory in the case of compactification from ten to four dimensions is constructed. The configurations are obtained by factorizing tori of semisimple Lie groups with respect to finite symmetry groups. A complete list of the configurations obtained by applying Coxeter transformations is given. Some topological characteristics having a phenomenological significance are calculated.
@article{TMF_1988_77_2_a5,
     author = {D. G. Markushevich and M. A. Olshanetsky and A. M. Perelomov},
     title = {Ricci-flat compactifications in superstring theory and {Coxeter} {automorphisms.~I}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {212--223},
     year = {1988},
     volume = {77},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1988_77_2_a5/}
}
TY  - JOUR
AU  - D. G. Markushevich
AU  - M. A. Olshanetsky
AU  - A. M. Perelomov
TI  - Ricci-flat compactifications in superstring theory and Coxeter automorphisms. I
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1988
SP  - 212
EP  - 223
VL  - 77
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1988_77_2_a5/
LA  - ru
ID  - TMF_1988_77_2_a5
ER  - 
%0 Journal Article
%A D. G. Markushevich
%A M. A. Olshanetsky
%A A. M. Perelomov
%T Ricci-flat compactifications in superstring theory and Coxeter automorphisms. I
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1988
%P 212-223
%V 77
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1988_77_2_a5/
%G ru
%F TMF_1988_77_2_a5
D. G. Markushevich; M. A. Olshanetsky; A. M. Perelomov. Ricci-flat compactifications in superstring theory and Coxeter automorphisms. I. Teoretičeskaâ i matematičeskaâ fizika, Tome 77 (1988) no. 2, pp. 212-223. http://geodesic.mathdoc.fr/item/TMF_1988_77_2_a5/

[1] Green M. B., Schwarz J. H., Nucl. Phys., B181:3 (1981), 502–530 ; B198:2 (1982), 252–268 ; 3, 441–459; Creen M. B., Schwarz J. H., Brink L., Nucl. Phys., B198:3 (1982), 474–489 | DOI | DOI

[2] Gross D. J., Harvey J. A., Martinec E., Rohm R., Nucl. Phys., B256:2 (1985), 253–284 | DOI

[3] Candelas P., Horowitz G., Strominger A., Witten E., Nucl. Phys., B258:1 (1985), 46–74 | DOI | MR

[4] Witten E., Nucl. Phys., 268:1 (1986), 79–112 | DOI | MR

[5] Witten E., Nucl. Phys., B258:1 (1985), 75–100 | DOI | MR

[6] Strominger A., Witten E., Commun. Math. Phys., 101:3 (1985), 341–362 | DOI | MR

[7] Yau S. T., Proceedings of the Argonne Symposium on Anomalies, Geometry and Topology, ed. Bardeen, World Scientific, 1985 | MR

[8] Markushevich D. G., Olshanetskii M. A., Perelomov A. M., Pisma v ZhETF, 1986, no. 43, 59 | MR

[9] Griffiths P., Harris P., Principles of Algebraic Geometry, Wiley-Interscience, N. Y., 1978 | MR | Zbl

[10] Dixon L., Harvey J. A., Vafa E., Witten E., Nucl. Phys., B261:4 (1985), 678–686 ; B274:2 (1986), 285–312 | DOI | DOI

[11] Bourbaki N., Groupes et Algebres de Lie, Chs IV–VI, Hermann, Paris, 1968 ; Kac V., Adv. in Math., 30 (1978), 85–136 | MR | Zbl | DOI | MR | Zbl

[12] Yau S. T., Commun. Pure Appl. Math., 31:2 (1978), 339–411 | DOI | MR | Zbl

[13] Beauville A., J. Diff. Geom., 18 (1983), 755–782 | DOI | MR | Zbl

[14] Popov V. L., “Discrete Complex Reflexion Groups”, Commun. of Math. Inst. Utrecht, 1982, no. 15 ; Shepard G. C., Todd J. A., Canad. J. Math., 6 (1954), 274 | MR | DOI | MR