Semiclassical approximation for a nonlinear oscillator that is stochastic in the classical limit
Teoretičeskaâ i matematičeskaâ fizika, Tome 77 (1988) no. 2, pp. 277-284 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a quantum system that is stochastic in the classical limit the time dependence of the quantum corrections for the observable mean values estimated. The physical consequences of the exponential law of growth of the quantum corrections is discussed.
@article{TMF_1988_77_2_a11,
     author = {G. P. Berman and A. M. Iomin},
     title = {Semiclassical approximation for a~nonlinear oscillator that is stochastic in the classical limit},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {277--284},
     year = {1988},
     volume = {77},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1988_77_2_a11/}
}
TY  - JOUR
AU  - G. P. Berman
AU  - A. M. Iomin
TI  - Semiclassical approximation for a nonlinear oscillator that is stochastic in the classical limit
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1988
SP  - 277
EP  - 284
VL  - 77
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1988_77_2_a11/
LA  - ru
ID  - TMF_1988_77_2_a11
ER  - 
%0 Journal Article
%A G. P. Berman
%A A. M. Iomin
%T Semiclassical approximation for a nonlinear oscillator that is stochastic in the classical limit
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1988
%P 277-284
%V 77
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1988_77_2_a11/
%G ru
%F TMF_1988_77_2_a11
G. P. Berman; A. M. Iomin. Semiclassical approximation for a nonlinear oscillator that is stochastic in the classical limit. Teoretičeskaâ i matematičeskaâ fizika, Tome 77 (1988) no. 2, pp. 277-284. http://geodesic.mathdoc.fr/item/TMF_1988_77_2_a11/

[1] Zaslavskii G. M., Chirikov B. V., UFN, 105:1 (1971), 3–39 | DOI | MR

[2] Zaslavskii G. M., Stokhastichnost dinamicheskikh sistem, Nauka, M., 1984 | MR | Zbl

[3] Chirikov B. V., Phys. Rep., 52:5 (1978), 263–379 | DOI | MR

[4] Liberman M., Likhtenberg A., Regulyarnaya i stokhasticheskaya dinamika, Mir, M., 1984

[5] Zaslavsky G. M., Phys. Rep., 80:3 (1981), 157–250 | DOI | MR

[6] Chirikov B. V., Izrailev F. M., Shepelyansky D. L., “Dynamical Stochasticity in Classical and Quantum Mechanics”, Sov. Scient. Rev., 26, 1981, 209–267 | MR

[7] Berman G. P., Zaslavsky G. M., Physica, 91A:3 (1978), 450–460 | DOI | MR

[8] Berman G. P., Zaslavskii G. M., DAN SSSR, 240:5 (1978), 1082–1085 | MR

[9] Berman G. P., Iomin A. M., Phys. Lett., 95A:3 (1983), 79–81 | DOI | MR

[10] Glauber Roy J., Phys. Rev., 131:6 (1963), 2766–2788 | DOI | MR

[11] Kheifets S. A., Sokolov V. V., On the Quantum Corrections to the Stochastic Motion of the Non-Linear Oscillator, Preprint 80-133, IYaF, Novosibirsk, 1980

[12] Sokolov V. V., TMF, 61:1 (1984), 128–139 | MR

[13] Berman G. P., Zaslavsky G. M., Physica, 111A:1 (1982), 17–44 | DOI | MR

[14] Glauber R., “Kogerentnost i detektirovanie kvantov”, Kogerentnye sostoyaniya v kvantovoi teorii, Mir, M., 1972, 26–70 | MR

[15] Klauder Dzh., Sudarshan E., Osnovy kvantovoi optiki, Mir, M., 1970, Gl. 7, 8.

[16] Karruzers P., Neto M., “Peremennye faza-ugol v kvantovoi mekhanike”, Kogerentnye sostoyaniya v kvantovoi teorii, Mir, M., 1972, 71–146 | MR

[17] Agarwal G. S., Wolf E., Phys. Rev., D2:70 (1970), 2161–2225 | MR

[18] Berman G. P., Iomin A. M., Zaslavsky G. M., Physica, 40D:1 (1981), 113–121 | Zbl