Classical non-Abelian solutions for nonstandard Lagrangians
Teoretičeskaâ i matematičeskaâ fizika, Tome 77 (1988) no. 2, pp. 266-276 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Some solutions of the equations of motion of the field are obtained for a certain class of effective Lagrangians in the standard Wu–Yang parametrization for the vector potential. It is shown that real solutions of monopole and dyon type can be obtained without introducing an additional interaction with Higgs fields. A dyon configuration for which the field energy density is zero is found. Solutions of the equations of motion of the field represented in the form of series in inverse powers of the distance are investigated. It is shown to be energetically advantageous for there to be a rearrangement of a purely chromomagnetic configuration into a configuration containing a chromoelectric component. Chromoelectric configurations with a distributed charge density are investigated.
@article{TMF_1988_77_2_a10,
     author = {A. I. Alekseev and A. S. Vshivtsev and A. V. Tatarintsev},
     title = {Classical {non-Abelian} solutions for nonstandard {Lagrangians}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {266--276},
     year = {1988},
     volume = {77},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1988_77_2_a10/}
}
TY  - JOUR
AU  - A. I. Alekseev
AU  - A. S. Vshivtsev
AU  - A. V. Tatarintsev
TI  - Classical non-Abelian solutions for nonstandard Lagrangians
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1988
SP  - 266
EP  - 276
VL  - 77
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1988_77_2_a10/
LA  - ru
ID  - TMF_1988_77_2_a10
ER  - 
%0 Journal Article
%A A. I. Alekseev
%A A. S. Vshivtsev
%A A. V. Tatarintsev
%T Classical non-Abelian solutions for nonstandard Lagrangians
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1988
%P 266-276
%V 77
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1988_77_2_a10/
%G ru
%F TMF_1988_77_2_a10
A. I. Alekseev; A. S. Vshivtsev; A. V. Tatarintsev. Classical non-Abelian solutions for nonstandard Lagrangians. Teoretičeskaâ i matematičeskaâ fizika, Tome 77 (1988) no. 2, pp. 266-276. http://geodesic.mathdoc.fr/item/TMF_1988_77_2_a10/

[1] Actor A., Rev. Mod. Phys., 51:3 (1979), 461–525 ; Раджараман Р., Солитоны и инстантоны в квантовой теории поля, Мир, М., 1985; Матинян С. Г., ЭЧАЯ, 16:3 (1985), 522–550 | DOI | MR | MR

[2] Alekseev A. I., Arbuzov B. A., Baikov V. A., TMF, 52:2 (1982), 187–198

[3] Alekseev A. I., YaF, 33:2 (1981), 516–525

[4] Alekseev A. I., Arbuzov B. A., Baikov V. A., Trudy IV seminara «Problemy fiziki vysokikh energii i kvantovoi teorii polya», T. I, IFVE, Protvino, 1981, 37–58

[5] Baker M., Ball J. S., Zachariasen F., Nucl. Phys., B176:3 (1981), 531–559 ; 560–572; Mandelstam S., Phys. Rev., D20:12 (1979), 3223–3238 ; Pagels H., Phys. Rev., D15:10 (1977), 2991–3002 | DOI

[6] Heck E. L., Slim H. A., Nuovo Cim., A88:4 (1985), 407–426 | DOI

[7] Natroshvili K. R., Khelashvili A. A., Khmaladze V. Yu., TMF, 65:3 (1985), 360–367 | MR

[8] Alekseev A. I., Edneral V. F., Tenzornaya struktura polyarizatsionnogo operatora glyuona v aksialnoi kalibrovke v infrakrasnoi oblasti, Preprint 86-46, IFVE, Serpukhov, 1986

[9] Alekseev A. I., Arbuzov B. A., Baikov V. A., YaF, 34:5 (1981), 1374–1383

[10] Arbuzov B. A., Boos E. E., Turashvili K. Sh., Z. Phys., C30 (1986), 287–292

[11] Alekseev A. I., Edneral V. F., Trudy IX seminara «Problemy fiziki vysokikh energii i kvantovoi teorii polya», IFVE, Protvino, 1986

[12] Baker M., Zacharissen F., Phys. Lett., B108:3 (1982), 206–208 | DOI

[13] Arbuzov B. A., Boos E. E., Davydychev A. I., Infrakrasnye asimptotiki glyuonnykh funktsii Grina v kovariantnoi kalibrovke, Preprint 86-123, IFVE, Serpukhov, 1986

[14] Baker M., Ball J. S., Zachariasen F., Nucl. Phys., B229:2 (1983), 445–455 | DOI

[15] Alekseev A. I., Arbuzov B. A., TMF, 59:1 (1984), 80–90 | MR

[16] Alekseev A. I., Arbuzov B. A., TMF, 65:2 (1985), 202–211 | MR

[17] Alekseev A. I., Arbuzov B. A., Trudy VII seminara «Problemy fiziki vysokikh energii i kvantovoi teorii polya», T. II, IFVE, Protvino, 1984, 3–22

[18] Vshivtsev A. S., Zhukovskii V. Ch., Tatarintsev A. V., Rukopis dep. v Izv. Vuzov, fizika, Reg. No 5199-B86 ot 16.08.1986

[19] Sokolov A. A., Ternov I. M., Zhukovskii V. Ch., Borisov A. V., Kalibrovochnye polya, MGU, M., 1986 | MR

[20] Bellman R., Teoriya ustoichivosti reshenii differentsialnykh uravnenii, IL, M., 1954 | MR