Superfield formulation of the simplest three-dimensional gauge theories and conformal supergravities
Teoretičeskaâ i matematičeskaâ fizika, Tome 77 (1988) no. 1, pp. 97-106 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A superfield description of three-dimensional $N=1,2$ supersynnnetric Yang–Mills theories and supergravities is given. Manifestly supersymmetric expressions are obtained for the topological Chern–Simons terms in the $N=1$ theory using the technique of differential and integral forms on superspace. The topological mass term in $D=3$, $N=2$ Yang–Mills theory is constructed in terms of an unconstrained gauge prepotential. A formulation of $D=3$, $N=2$ supergravity is given in the Ogievetskii–Sokachev geometrical approach, and superfield equations of conformal supergravity are obtained.
@article{TMF_1988_77_1_a8,
     author = {B. M. Zupnik and D. G. Pak},
     title = {Superfield formulation of the simplest three-dimensional gauge theories and conformal supergravities},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {97--106},
     year = {1988},
     volume = {77},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1988_77_1_a8/}
}
TY  - JOUR
AU  - B. M. Zupnik
AU  - D. G. Pak
TI  - Superfield formulation of the simplest three-dimensional gauge theories and conformal supergravities
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1988
SP  - 97
EP  - 106
VL  - 77
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1988_77_1_a8/
LA  - ru
ID  - TMF_1988_77_1_a8
ER  - 
%0 Journal Article
%A B. M. Zupnik
%A D. G. Pak
%T Superfield formulation of the simplest three-dimensional gauge theories and conformal supergravities
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1988
%P 97-106
%V 77
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1988_77_1_a8/
%G ru
%F TMF_1988_77_1_a8
B. M. Zupnik; D. G. Pak. Superfield formulation of the simplest three-dimensional gauge theories and conformal supergravities. Teoretičeskaâ i matematičeskaâ fizika, Tome 77 (1988) no. 1, pp. 97-106. http://geodesic.mathdoc.fr/item/TMF_1988_77_1_a8/

[1] Siegel W., Nucl. Phys., B156:1 (1979), 135–143 ; Gates S. J., Grisary M. T., Roček M., Siegel W., Superspace, Benjamin/Cumming, N. Y., 1983 | DOI | MR | MR

[2] Deser S., Jackiw R., Templeton S., Phys. Rev. Lett., 48:15 (1982), 975–978 ; Ann. Phys., 140:2 (1982), 372–411 ; Джэкив Р., УФН, 149:1 (1986), 140–148 | DOI | DOI | MR

[3] Reglich A. N., Phys. Rev., D29:10 (1984), 2366–2374

[4] Vuorio I., Phys. Lett., B175:2 (1986), 176–178 | DOI

[5] Deser S., Kay J. H., Phys. Lett., B120:1/2/3 (1983), 97–100 ; Van Nieuwenhuizen P., Phys. Rev., D32:4 (1985), 872–878 | DOI

[6] Roček M., Van Nieuwenhuizen P., Class. Quant. Grav., 3:1 (1986), 43–53 | DOI | MR | Zbl

[7] Wess J., Springer Lecture Notes in Phys., 77, 1978, 81 ; Geometricheskie idei v fizike, Mir, M., 1983 | DOI | MR | MR

[8] Berezin F. A., YaF, 30:4(10) (1979), 1168–1174 | MR | Zbl

[9] Leites D. A., Teoriya supermnogoobrazii, Karelskii filial AN SSSR, Petrozavodsk, 1983 ; Манин Ю. И., Калибровочные поля и комплексная геометрия, Наука, М., 1984 | Zbl | MR

[10] Brown M., Gates M. J., Ann. Phys., 122:2 (1979), 443–462 ; Uematsu T., Zeit. Phys., C29:1 (1985), 143–146 | DOI | MR | MR

[11] Ogievetskii V. I., Sokachev E. S., YaF, 31:1 (1980), 264–279 ; 32:3(9), 870–879 | MR | MR

[12] Zupnik B. M., YaF, 36:3(9) (1982), 779–789 | MR | Zbl