Single-loop counterterm for 4-dimensional Sigma model with higher derivatives
Teoretičeskaâ i matematičeskaâ fizika, Tome 77 (1988) no. 1, pp. 42-50

Voir la notice de l'article provenant de la source Math-Net.Ru

The most general action without dimensional parameters for the nonlinear sigma model with higher derivatives (of fourth order) is formulated in 4-dimensional space-time. A generalized Schwinger–DeWitt technique is used to calculate the single-loop counterterm up to terms proportional to the equations of motion. Conditions of single-loop finiteness are established, and renormalization-group equations for the multiplicatively renormalizable $n$-sphere case are obtained. Solutions of the renormalization-group equations with asymptotic freedom in the ultraviolet region are found.
@article{TMF_1988_77_1_a3,
     author = {I. L. Buchbinder and S. V. Ketov},
     title = {Single-loop counterterm for 4-dimensional {Sigma} model with higher derivatives},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {42--50},
     publisher = {mathdoc},
     volume = {77},
     number = {1},
     year = {1988},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1988_77_1_a3/}
}
TY  - JOUR
AU  - I. L. Buchbinder
AU  - S. V. Ketov
TI  - Single-loop counterterm for 4-dimensional Sigma model with higher derivatives
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1988
SP  - 42
EP  - 50
VL  - 77
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1988_77_1_a3/
LA  - ru
ID  - TMF_1988_77_1_a3
ER  - 
%0 Journal Article
%A I. L. Buchbinder
%A S. V. Ketov
%T Single-loop counterterm for 4-dimensional Sigma model with higher derivatives
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1988
%P 42-50
%V 77
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1988_77_1_a3/
%G ru
%F TMF_1988_77_1_a3
I. L. Buchbinder; S. V. Ketov. Single-loop counterterm for 4-dimensional Sigma model with higher derivatives. Teoretičeskaâ i matematičeskaâ fizika, Tome 77 (1988) no. 1, pp. 42-50. http://geodesic.mathdoc.fr/item/TMF_1988_77_1_a3/