Finite-gap solutions of the stationary axisymmetric Einstein equation in vacuum
Teoretičeskaâ i matematičeskaâ fizika, Tome 77 (1988) no. 1, pp. 25-41 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A new and large class of exact solutions of the stationary axisymmetric Einstein equation, which are expressed in terms of the Riemann $\theta$ function, is constructed. The properties of the constructed “finite-gap” solutions differ significantly from those of the well-known finite-gap solutions (for example, of the Korteweg–de Vries equation and the nonlinear Schrödinger equation). In particular, the dependence on the dynamical variables in the final expressions is given by a trajectory on a manifold of moduli of algebraic curves, and not on the Jacobi manifold of a given curve. In a degenerate case the constructed solutions include all the main known solutions that can be expressed in terms of elementary functions.
@article{TMF_1988_77_1_a2,
     author = {D. A. Korotkin},
     title = {Finite-gap solutions of the stationary axisymmetric {Einstein} equation in vacuum},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {25--41},
     year = {1988},
     volume = {77},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1988_77_1_a2/}
}
TY  - JOUR
AU  - D. A. Korotkin
TI  - Finite-gap solutions of the stationary axisymmetric Einstein equation in vacuum
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1988
SP  - 25
EP  - 41
VL  - 77
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1988_77_1_a2/
LA  - ru
ID  - TMF_1988_77_1_a2
ER  - 
%0 Journal Article
%A D. A. Korotkin
%T Finite-gap solutions of the stationary axisymmetric Einstein equation in vacuum
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1988
%P 25-41
%V 77
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1988_77_1_a2/
%G ru
%F TMF_1988_77_1_a2
D. A. Korotkin. Finite-gap solutions of the stationary axisymmetric Einstein equation in vacuum. Teoretičeskaâ i matematičeskaâ fizika, Tome 77 (1988) no. 1, pp. 25-41. http://geodesic.mathdoc.fr/item/TMF_1988_77_1_a2/

[1] Geroch R., J. Math. Phys., 13 (1972), 394–405 | DOI | MR

[2] Kinnersley W., Chitre D., J. Math. Phys., 19 (1978), 2037–2043 | DOI | MR

[3] Ernst F., Hauser I., J. Math. Phys., 22 (1981), 1051–1064 | DOI | MR

[4] Hauser I., Solutions of Einstein's Equation: Techniques and Results, eds. W. Dietz, G. Hoenselaers, Springer-Verlag, Berlin–Heidelberg–New York, 1984 | MR

[5] Sibgatullin N. R., Kolebaniya i volny v silnykh gravitatsionnykh i elektromagnitnykh polyakh, Nauka, M., 1984 | MR | Zbl

[6] Breitenlohner P., Maison D., On the Geroch Group, Preprint MPI-PAE/PTh 70/86, MPI-PAE/PTh, Munich, 1986 | MR

[7] Belinskii V. A., Zakharov V. E., ZhETF, 55 (1978), 1953–1972

[8] Belinskii V. A., Zakharov V. E., ZhETF, 77 (1979), 3–19 | MR

[9] Maison D., Phys. Rev. Lett., 41:8 (1978), 521–522 | DOI | MR

[10] Kramer D., Shtefani G., Mak-Kallum M., Kherlt E., Tochnye resheniya uravnenii Einshteina, Energoizdat, M., 1982 | MR

[11] Alekseev G. A., Pisma v ZhETF, 32 (1980), 301–303

[12] Veselov A. P., TMF, 54:2 (1983), 239–245 | MR

[13] Oohara K., Sato H., Progr. Theor. Phys., 50 (1973), 95–100 | DOI | MR

[14] Cosgrove R., J. Phys. A, 16 (1977), 1481–1524 | DOI | MR

[15] Zakharov V. E., Manakov S. V., Novikov S. P., Pitaevskii L. P., Teoriya solitonov: metod obratnoi zadachi, Nauka, M., 1980 | MR

[16] Dubrovin B. A., Matveev V. B., Novikov S. P., UMN, 31:1 (1976), 55–136 | MR | Zbl

[17] Dubrovin B. A., UMN, 36:2 (1981), 11–80 | MR | Zbl

[18] Bikbaev R. F., Bobenko A. I., Its A. R., DAN SSSR, 272:6 (1983), 1293–1298 | MR | Zbl

[19] Bikbaev R. F., Bobenko A. I., Its A. R., Uravnenie Landau–Lifshitsa. Teoriya tochnykh reshenii, I, Preprint DonFTI-84-6(81), DonFTI, Donetsk, 1984 | MR

[20] Bikbaev R. F., Bobenko A. I., Its A. R., Uravnenie Landau–Lifshitsa. Teoriya tochnykh reshenii, II, Preprint DonFTI-84-7(82), DonFTI, Donetsk, 1984 | MR

[21] Hoenselaers C., Solutions of Einstein's Equations: Techniques and Results, eds. W. Dietz, C. Hoenselaers, Springer-Verlag, Berlin–Heidelberg–New York, 1984 | DOI | MR | Zbl

[22] Neugelaner G., Kramer D., J. Phys. A, 16 (1983), 1927–1936 | DOI | MR

[23] Burtsev S. P., Zakharov V. E., Mikhailov A. V., TMF, 70:3 (1987), 323–341 | MR | Zbl