Finite-gap solutions of the stationary axisymmetric Einstein equation in vacuum
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 77 (1988) no. 1, pp. 25-41
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A new and large class of exact solutions of the stationary axisymmetric
Einstein equation, which are expressed in terms of the Riemann $\theta$ function,
is constructed. The properties of the constructed “finite-gap” solutions
differ significantly from those of the well-known finite-gap solutions
(for example, of the Korteweg–de Vries equation and the nonlinear
Schrödinger equation). In particular, the dependence on the dynamical
variables in the final expressions is given by a trajectory on a manifold
of moduli of algebraic curves, and not on the Jacobi manifold of a given
curve. In a degenerate case the constructed solutions include all the
main known solutions that can be expressed in terms of elementary functions.
			
            
            
            
          
        
      @article{TMF_1988_77_1_a2,
     author = {D. A. Korotkin},
     title = {Finite-gap solutions of the stationary axisymmetric {Einstein} equation in vacuum},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {25--41},
     publisher = {mathdoc},
     volume = {77},
     number = {1},
     year = {1988},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1988_77_1_a2/}
}
                      
                      
                    TY - JOUR AU - D. A. Korotkin TI - Finite-gap solutions of the stationary axisymmetric Einstein equation in vacuum JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1988 SP - 25 EP - 41 VL - 77 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1988_77_1_a2/ LA - ru ID - TMF_1988_77_1_a2 ER -
D. A. Korotkin. Finite-gap solutions of the stationary axisymmetric Einstein equation in vacuum. Teoretičeskaâ i matematičeskaâ fizika, Tome 77 (1988) no. 1, pp. 25-41. http://geodesic.mathdoc.fr/item/TMF_1988_77_1_a2/
