Asymptotics of correlation decrease for Gibbs spin fields
Teoretičeskaâ i matematičeskaâ fizika, Tome 77 (1988) no. 1, pp. 3-12 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The asymptotics of decrease of the correlations $\langle F_0,F_x\rangle$ is considered in the case of Gibbs spin fields on a lattice $\mathbb Z^\nu$ of arbitrary dimension at high temperatures for a large class of functions $F_0$ ($F_x$ is the function $F_0$ “shifted” by the vector $x\in\mathbb Z^\nu$). The correlation in the case of shift of $F_0$ along the “time” axis is studied in most detail. In all the considered cases the leading (exponential) term of the asymptotic behavior is found, and also its pre-exponential factor.
@article{TMF_1988_77_1_a0,
     author = {E. A. Zhizhina and R. A. Minlos},
     title = {Asymptotics of correlation decrease for {Gibbs} spin fields},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {3--12},
     year = {1988},
     volume = {77},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1988_77_1_a0/}
}
TY  - JOUR
AU  - E. A. Zhizhina
AU  - R. A. Minlos
TI  - Asymptotics of correlation decrease for Gibbs spin fields
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1988
SP  - 3
EP  - 12
VL  - 77
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1988_77_1_a0/
LA  - ru
ID  - TMF_1988_77_1_a0
ER  - 
%0 Journal Article
%A E. A. Zhizhina
%A R. A. Minlos
%T Asymptotics of correlation decrease for Gibbs spin fields
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1988
%P 3-12
%V 77
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1988_77_1_a0/
%G ru
%F TMF_1988_77_1_a0
E. A. Zhizhina; R. A. Minlos. Asymptotics of correlation decrease for Gibbs spin fields. Teoretičeskaâ i matematičeskaâ fizika, Tome 77 (1988) no. 1, pp. 3-12. http://geodesic.mathdoc.fr/item/TMF_1988_77_1_a0/

[1] Ornstain L. S., Zernike F., Proc. Acad. Sci., 17 (1914), 793

[2] Stephenson J., J. Math. Phys., 7 (1966), 1123 | DOI

[3] Hecht R., Phys. Rev., 158 (1967), 557 | DOI

[4] Polyakov A. M., ZhETF, 55 (1968), 1026–1038

[5] Bricmont J., Fröhlich J., Statistical mechanical methods in particle structure analysis of lattice field theories, Preprint CH-8093, ETH-Hönggerberg, Zürich, 1984 | MR

[6] Minlos R. A., Sinai Ya. G., Zamechanie ob ubyvanii korrelyatsii v termodinamicheskoi sisteme, Preprint No 22, MGU, M., 1971

[7] Minlos R. A., Sinai Ya. G., TMF, 2:2 (1970), 230–243 | MR

[8] Malyshev V. A., Minlos R. A., J. Stat. Phys., 21:3 (1979), 231–242 | DOI | MR

[9] Malyshev V. A., Minlos R. A., Commun. Math. Phys., 82 (1981), 211–226 | DOI | MR | Zbl

[10] Mamatov Sh. S., O svyazannykh sostoyaniyakh transfer-matritsy gibbsovskogo reshetchatogo polya, Dis. ...kand. fiz.-matem. nauk, MGU, M., 1987

[11] Camp W. J., Fisher M., Phys. Rev. Lett., 26 (1971), 73 | DOI

[12] Minlos R. A., “How our acquaintance with Efim Samoylovich Fradkin began and three etudes in honour of his 60th birthday”, Quantum field theory and quantum statistics, Essays in Honour of the 60th Birthday of E. S. Fradkin, Adam Hilger Ltd, London, 1987 | MR

[13] Fedoryuk M. V., Metod perevala, Nauka, M., 1978 | MR