Equilibrium equations for a class of continuous systems. The case of superstable interactions
Teoretičeskaâ i matematičeskaâ fizika, Tome 76 (1988) no. 3, pp. 418-423 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A study is made of the problem of the uniqueness of translationally invariant Gibbs states of the grand canonical ensemble for a class of continuous systems that are neutral on the whole and in which the two-body interaction is given by a positive-definite kernel. Uniqueness of the limit states is proved for all regular values of the chemical activity in the case when the interaction satisfies a property of generalized superstability.
@article{TMF_1988_76_3_a9,
     author = {R. Gelerak},
     title = {Equilibrium equations for a~class of continuous systems. {The~case} of superstable interactions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {418--423},
     year = {1988},
     volume = {76},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1988_76_3_a9/}
}
TY  - JOUR
AU  - R. Gelerak
TI  - Equilibrium equations for a class of continuous systems. The case of superstable interactions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1988
SP  - 418
EP  - 423
VL  - 76
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1988_76_3_a9/
LA  - ru
ID  - TMF_1988_76_3_a9
ER  - 
%0 Journal Article
%A R. Gelerak
%T Equilibrium equations for a class of continuous systems. The case of superstable interactions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1988
%P 418-423
%V 76
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1988_76_3_a9/
%G ru
%F TMF_1988_76_3_a9
R. Gelerak. Equilibrium equations for a class of continuous systems. The case of superstable interactions. Teoretičeskaâ i matematičeskaâ fizika, Tome 76 (1988) no. 3, pp. 418-423. http://geodesic.mathdoc.fr/item/TMF_1988_76_3_a9/

[1] Fröhlich J., Park Y. M., Commun. Math. Phys., 57 (1978), 235 | DOI | MR

[2] Brydges D., Federbusch P., Commun. Math. Phys., 73 (1980), 197 ; Park Y. M., Commun. Math. Phys., 70 (1979), 161 ; Imbrie J., Commun. Math. Phys., 87 (1983), 515 | DOI | MR | DOI | MR | DOI | MR

[3] Fröhlich J., Spencer T., J. Stat. Phys., 24 (1981), 527 | DOI | MR

[4] Fontaine J. R., Martin Ph. A., J. Stat. Phys., 36 (1984), 163 | DOI | MR | Zbl

[5] Aizenmann M., Martin Ph. A., J. Stat. Phys., 78 (1984), 99

[6] Gelerak R., TMF, 67:2 (1986), 289–303 | MR

[7] Gielerak R., BiBos preprint 274, Bielefeld University, 1987; J. Math. Phys. (to appear)

[8] Lewis J. T., Pule J. V., de Smedt Ph., J. Stat. Phys., 35 (1984), 381 | DOI | MR

[9] Ruelle D., Commun. Math. Phys., 18 (1970), 127 ; 50 (1976), 189 | DOI | MR | Zbl | DOI | MR