Equilibrium equations for a~class of continuous systems. The~case of superstable interactions
Teoretičeskaâ i matematičeskaâ fizika, Tome 76 (1988) no. 3, pp. 418-423
Voir la notice de l'article provenant de la source Math-Net.Ru
A study is made of the problem of the uniqueness of translationally
invariant Gibbs states of the grand canonical ensemble for a class of
continuous systems that are neutral on the whole and in which the
two-body interaction is given by a positive-definite kernel. Uniqueness
of the limit states is proved for all regular values of the
chemical activity in the case when the interaction satisfies a property
of generalized superstability.
@article{TMF_1988_76_3_a9,
author = {R. Gelerak},
title = {Equilibrium equations for a~class of continuous systems. {The~case} of superstable interactions},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {418--423},
publisher = {mathdoc},
volume = {76},
number = {3},
year = {1988},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1988_76_3_a9/}
}
TY - JOUR AU - R. Gelerak TI - Equilibrium equations for a~class of continuous systems. The~case of superstable interactions JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1988 SP - 418 EP - 423 VL - 76 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1988_76_3_a9/ LA - ru ID - TMF_1988_76_3_a9 ER -
R. Gelerak. Equilibrium equations for a~class of continuous systems. The~case of superstable interactions. Teoretičeskaâ i matematičeskaâ fizika, Tome 76 (1988) no. 3, pp. 418-423. http://geodesic.mathdoc.fr/item/TMF_1988_76_3_a9/