High-temperature behavior of the partition function for the $P(\varphi)_2$ model of Euclidean field theory
Teoretičeskaâ i matematičeskaâ fizika, Tome 76 (1988) no. 3, pp. 328-338 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The $P(\varphi)_2$ model of Euclidean (quantum) field theory on a bounded interval with zero-value boundary conditions is considered. An asymptotic representation of the partition function is obtained in the form of a product of the partition function of the free field and a factor that depends on the interaction. Some physical consequences of the result are discussed.
@article{TMF_1988_76_3_a1,
     author = {V. V. Borzov},
     title = {High-temperature behavior of the partition function for the~$P(\varphi)_2$ model of {Euclidean} field theory},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {328--338},
     year = {1988},
     volume = {76},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1988_76_3_a1/}
}
TY  - JOUR
AU  - V. V. Borzov
TI  - High-temperature behavior of the partition function for the $P(\varphi)_2$ model of Euclidean field theory
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1988
SP  - 328
EP  - 338
VL  - 76
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1988_76_3_a1/
LA  - ru
ID  - TMF_1988_76_3_a1
ER  - 
%0 Journal Article
%A V. V. Borzov
%T High-temperature behavior of the partition function for the $P(\varphi)_2$ model of Euclidean field theory
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1988
%P 328-338
%V 76
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1988_76_3_a1/
%G ru
%F TMF_1988_76_3_a1
V. V. Borzov. High-temperature behavior of the partition function for the $P(\varphi)_2$ model of Euclidean field theory. Teoretičeskaâ i matematičeskaâ fizika, Tome 76 (1988) no. 3, pp. 328-338. http://geodesic.mathdoc.fr/item/TMF_1988_76_3_a1/

[1] Borzov V. V., TMF, 57:3 (1983), 373–381 | MR

[2] Borzov V. V., Differentsialnye uravneniya. Teoriya rasseyaniya, LGU, L., 1986, 59–66 | MR

[3] Ray D., Trans. Amer. Math. Soc., 77 (1954), 299–321 | DOI | MR | Zbl

[4] Birman M. Sh., Solomyak M. Z., Itogi nauki i tekhniki. Matematicheskii analiz, 14, VINITI, M., 1977, 5–58 | MR | Zbl

[5] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, T. 2, Mir, M., 1978 | MR

[6] Saimon B., Model $P(\varphi)_2$ evklidovoi kvantovoi teorii polya, Mir, M., 1976

[7] Gelfand I. M., Yaglom A. M., UMN, XI:1 (1956), 77–114 | MR | Zbl

[8] Borzov V. V., Matem. zametki, 26:4 (1979), 547–560 | MR | Zbl

[9] Høegh-Krohn R., Commun. Math. Phys., 38 (1974), 195–224 | DOI | MR

[10] Ingham A. E., Ann. Math., 42:5 (1941), 1075–1090 | DOI | MR | Zbl

[11] Guera F., Rosen L., Simon B., Ann. Math., 101:1–2 (1975), 111–259 | DOI | MR

[12] Bogolyubov N. M., Brattsev V. F., Vasilev A. N., Korzhenevskii A. L., Radzhabov R. A., TMF, 26:3 (1976), 341–351 | MR

[13] Fisher M., Priroda kriticheskogo sostoyaniya, Mir, M., 1968

[14] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, T. 3, Nauka, M., 1966

[15] Evgrafov M. A., Asimptoticheskie otsenki i tselye funktsii, Nauka, M., 1979 | MR | Zbl