Invariant measures of one-dimensional dynamical systems of anharmonic oscillators
Teoretičeskaâ i matematičeskaâ fizika, Tome 76 (1988) no. 2, pp. 261-271 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The description of invariant measures for a dynamical system generated by an infinite chain of equations of motion of anharmonic oscillators is investigated. It is shown that in the class of Gibbs measures corresponding to Hamiltonians $h=\{h_\Lambda, \Lambda\subset{\mathbf Z}^1\}$ of “general” form the set of invariant measures is exhausted by the equilibrium Gibbs distributions, i.e., by the Gibbs measures corresponding to the total energy interval.
@article{TMF_1988_76_2_a8,
     author = {O. G. Martirosyan},
     title = {Invariant measures of one-dimensional dynamical systems of anharmonic oscillators},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {261--271},
     year = {1988},
     volume = {76},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1988_76_2_a8/}
}
TY  - JOUR
AU  - O. G. Martirosyan
TI  - Invariant measures of one-dimensional dynamical systems of anharmonic oscillators
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1988
SP  - 261
EP  - 271
VL  - 76
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1988_76_2_a8/
LA  - ru
ID  - TMF_1988_76_2_a8
ER  - 
%0 Journal Article
%A O. G. Martirosyan
%T Invariant measures of one-dimensional dynamical systems of anharmonic oscillators
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1988
%P 261-271
%V 76
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1988_76_2_a8/
%G ru
%F TMF_1988_76_2_a8
O. G. Martirosyan. Invariant measures of one-dimensional dynamical systems of anharmonic oscillators. Teoretičeskaâ i matematičeskaâ fizika, Tome 76 (1988) no. 2, pp. 261-271. http://geodesic.mathdoc.fr/item/TMF_1988_76_2_a8/

[1] Dobrushin R. L., Sinai Ya. G., Sukhov Yu. M., “Dinamicheskie sistemy statisticheskoi mekhaniki i kineticheskie uravneniya”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 2, VINITI AN SSSR, M., 1985, 235–284 | MR

[2] Petrina D. Ya., Gerasimenko V. I., Malyshev P. V., Matematicheskie osnovy klassicheskoi statisticheskoi mekhaniki, Naukova dumka, Kiev, 1985 | MR | Zbl

[3] Lanford O. E., Lebowitz J. L., Lect. Notes in Phys., 38, 1975, 144–177 | DOI | MR | Zbl

[4] Lanford O. E., Lebowitz J. L., Leib E., J. Stat. Phys., 16:6 (1977), 453–461 | DOI | MR

[5] Marchioro C., Pellegrinotti A., Pulvirenti M., Random fields Rigorous results in statistical mechanics and quantum field theory, V. 11, North-Holland, Amsterdam–Oxford–New York, 1981, 733–746 | MR

[6] Fritz J., J. Stat. Phys., 33:4 (1984), 397–412

[7] Gurevich B. M., Sinai Ya. G., Sukhov Yu. M., UMN, 28:5 (1973), 45–82 | MR | Zbl

[8] Gurevich B. M., Suhov Yu. M., J. Math. Phys., 49:1 (1976), 69–96 ; 54:1 (1977), 81–96 ; 56:3, 225–236 ; 84:4 (1982), 333–376 | MR | DOI | MR | Zbl | DOI | MR | DOI | MR

[9] Sukhov Yu. M., TMF, 55:1 (1983), 78–87 | MR

[10] Musina I. Yu., TMF, 69:2 (1986), 259–272 | MR

[11] Gurevich B. M., UMN, 41:2 (1986), 193–194 | MR

[12] Lebowitz J. L., Presutti E., Commun. Math. Phys., 50:3 (1976), 195–218 | DOI | MR

[13] Marchioro C., Pellegrinotti A., Pulvirenti M., Suhov Yu. M., Commun. Math. Phys., 66:2 (1979), 131–146 | DOI | MR