Hierarchy of time scales in the case of weak diffusion
Teoretičeskaâ i matematičeskaâ fizika, Tome 76 (1988) no. 2, pp. 219-230
Cet article a éte moissonné depuis la source Math-Net.Ru
The variational method is used to calculate the asymptotic behavior of the lowest eigenvalues and eigenfunctions of the diffusion operator in the case of a small diffusion coefficient. It is shown that for certain time scales the diffusion process can be replaced by Markov processes with finite number of states.
@article{TMF_1988_76_2_a5,
author = {V. A. Buslov and K. A. Makarov},
title = {Hierarchy of time scales in the case of weak diffusion},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {219--230},
year = {1988},
volume = {76},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1988_76_2_a5/}
}
V. A. Buslov; K. A. Makarov. Hierarchy of time scales in the case of weak diffusion. Teoretičeskaâ i matematičeskaâ fizika, Tome 76 (1988) no. 2, pp. 219-230. http://geodesic.mathdoc.fr/item/TMF_1988_76_2_a5/
[1] Venttsel A. D., Freidlin M. I., Fluktuatsii v dinamicheskikh sistemakh pod deistviem malykh sluchainykh vozmuschenii, Fizmatgiz, M., 1979 | MR | Zbl
[2] Matkowsky B. J., Schuss Z., SIAM J. Appl. Math., 40 (1981), 242–254 | DOI | MR | Zbl
[3] Belozerskii G. N., Makarov K. A., Pavlov B. S., Vestn. LGU, 1982, no. 4, 12–18
[4] Belozerskii G. N., Makarov K. A., Pavlov B. S., Simonyan S. G., Vestn. LGU, Ser. 4, 1986, 84–87
[5] Makarov K. A., DAN SSSR, 280:2 (1985), 337–342 | MR | Zbl