Hierarchy of time scales in the case of weak diffusion
Teoretičeskaâ i matematičeskaâ fizika, Tome 76 (1988) no. 2, pp. 219-230 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The variational method is used to calculate the asymptotic behavior of the lowest eigenvalues and eigenfunctions of the diffusion operator in the case of a small diffusion coefficient. It is shown that for certain time scales the diffusion process can be replaced by Markov processes with finite number of states.
@article{TMF_1988_76_2_a5,
     author = {V. A. Buslov and K. A. Makarov},
     title = {Hierarchy of time scales in the case of weak diffusion},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {219--230},
     year = {1988},
     volume = {76},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1988_76_2_a5/}
}
TY  - JOUR
AU  - V. A. Buslov
AU  - K. A. Makarov
TI  - Hierarchy of time scales in the case of weak diffusion
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1988
SP  - 219
EP  - 230
VL  - 76
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1988_76_2_a5/
LA  - ru
ID  - TMF_1988_76_2_a5
ER  - 
%0 Journal Article
%A V. A. Buslov
%A K. A. Makarov
%T Hierarchy of time scales in the case of weak diffusion
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1988
%P 219-230
%V 76
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1988_76_2_a5/
%G ru
%F TMF_1988_76_2_a5
V. A. Buslov; K. A. Makarov. Hierarchy of time scales in the case of weak diffusion. Teoretičeskaâ i matematičeskaâ fizika, Tome 76 (1988) no. 2, pp. 219-230. http://geodesic.mathdoc.fr/item/TMF_1988_76_2_a5/

[1] Venttsel A. D., Freidlin M. I., Fluktuatsii v dinamicheskikh sistemakh pod deistviem malykh sluchainykh vozmuschenii, Fizmatgiz, M., 1979 | MR | Zbl

[2] Matkowsky B. J., Schuss Z., SIAM J. Appl. Math., 40 (1981), 242–254 | DOI | MR | Zbl

[3] Belozerskii G. N., Makarov K. A., Pavlov B. S., Vestn. LGU, 1982, no. 4, 12–18

[4] Belozerskii G. N., Makarov K. A., Pavlov B. S., Simonyan S. G., Vestn. LGU, Ser. 4, 1986, 84–87

[5] Makarov K. A., DAN SSSR, 280:2 (1985), 337–342 | MR | Zbl