Operator expansions in the minimal subtraction scheme. II. Explicit formulas for coefficient functions
Teoretičeskaâ i matematičeskaâ fizika, Tome 76 (1988) no. 2, pp. 207-218 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the framework of the operator expansions developed in [1–3], it is shown in an arbitrary model that the coefficient functions of the operator expansion (renormalized in the minimal subtraction scheme) are finite, and explicit formulas convenient for calculating them in practice are obtained.
@article{TMF_1988_76_2_a4,
     author = {K. G. Chetyrkin},
     title = {Operator expansions in the minimal subtraction scheme. {II.~Explicit} formulas for coefficient functions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {207--218},
     year = {1988},
     volume = {76},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1988_76_2_a4/}
}
TY  - JOUR
AU  - K. G. Chetyrkin
TI  - Operator expansions in the minimal subtraction scheme. II. Explicit formulas for coefficient functions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1988
SP  - 207
EP  - 218
VL  - 76
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1988_76_2_a4/
LA  - ru
ID  - TMF_1988_76_2_a4
ER  - 
%0 Journal Article
%A K. G. Chetyrkin
%T Operator expansions in the minimal subtraction scheme. II. Explicit formulas for coefficient functions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1988
%P 207-218
%V 76
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1988_76_2_a4/
%G ru
%F TMF_1988_76_2_a4
K. G. Chetyrkin. Operator expansions in the minimal subtraction scheme. II. Explicit formulas for coefficient functions. Teoretičeskaâ i matematičeskaâ fizika, Tome 76 (1988) no. 2, pp. 207-218. http://geodesic.mathdoc.fr/item/TMF_1988_76_2_a4/

[1] Chetyrkin K. G., Gorishny S. G., Tkachov F. V., Phys. Lett., B119:4–6 (1982), 407–411 | DOI

[2] Chetyrkin K. G., TMF, 75:1 (1988), 26–40 | MR

[3] Chetyrkin K. G., Phys. Lett., 126B:5 (1983), 371–375 | DOI

[4] 't Hooft G., Nucl. Phys., B61:1 (1973), 455–468 | DOI

[5] Smirnov V. A., Chetyrkin K. G., TMF, 63:2 (1985), 208–218 | MR

[6] 't Hooft G., Veltman M., Nucl. Phys., B44:1 (1972), 189–213 | DOI

[7] Zavyalov O. I., Perenormirovannye diagrammy Feinmana, Nauka, M., 1979 | MR

[8] Breitenlohner, Maison, Commun. Math. Phys., 52 (1977), 11–75 | DOI | MR

[9] Anikin S. A., Zavyalov O. I., TMF, 26:2 (1976), 162–171 ; Anikin S. A., Polivanov M. C., Zavialov O. I., Fortschr. Phys., 27:8 (1977), 459–500 | MR | DOI | MR

[10] Chetyrkin K. G., Kataev A. L., Tkachov F. V., Nucl. Phys., B174:2 (1980), 345–377 | DOI | MR

[11] Caswell W. E., Kennedy A. D., Phys. Rev., D25:2 (1982), 392–408 | MR | Zbl

[12] Chetyrkin K. G., Tkachov F. V., Phys. Lett., 1982, no. 2, 340–345 | DOI | MR

[13] Anikin S. A., Zavyalov O. I., TMF, 27:3 (1976), 425–430 ; Anikin S. A., Zavialov O. I., Ann. Phys., 116:1 (1978), 135–166 | MR | DOI | MR

[14] Gorishny S. G., Larin S. A., Tkachov F. V., Phys. Lett., 124B:3–4 (1983), 217 | DOI

[15] Pivovarov G. B., Tkachov F. V., Combinatorics of Euclidean Asymptotics of Green-Functions, Preprint INR P-0370, INR, M., 1979

[16] Smirnov V. A., Chetyrkin K. G., TMF, 56:2 (1983), 206–215 ; Smirnov V. A., Fortschr. Phys., 33:9 (1985), 495–522 | MR | DOI | MR

[17] Gorishnii S. G., Larin S. A., Koeffitsientnye funktsii asimptoticheskikh operatornykh razlozhenii v minimalnoi vychitatelnoi skheme, Preprint OIYaI R2-86-68, OIYaI, Dubna, 1986

[18] Tkachov F. V., Euclidean Asymptotics of Feynman Integrals. Basic Notions, Preprint INR P-0332, INR, M., 1984

[19] Tkachov F. V., Asymptotics of Euclidean Feynman Integrals. One-loop case, Preprint P-0332, INR, M., 1984

[20] Bogolyubov N. N., Shirkov D. V., Vvedenie v teoriyu kvantovannykh polei, Nauka, M., 1984 | MR

[21] Gorishny S. G., On the construction of operator expansions and effective theories in the MS-scheme. General formalism, Preprint E2-86-176, JINR, Dubna, 1986 | MR

[22] Gorishny S. G., On the construction of operator expansions and effective theories in the MS-scheme. Examples. Infrared finitness of coefficient functions, Preprint E2-86-117, JINR, Dubna, 1986 | MR