Investigation of nonlinear one-dimensional systems by means of the Hamiltonian formalism
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 76 (1988) no. 2, pp. 199-206
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A method is proposed for investigating the solutions of the weakly
perturbed sine–Gordon equation by means of action–angle variables.
The Green's function of radiation on the background of many-soliton
solutions is calculated in the first approximation in the amplitude.
The dynamics of one- and two-soliton solutions is investigated. The Landau–Lifshitz equation (including the nonintegrable modifications) is reduced in a special case to the perturbed sine–Gordon equation. Some solutions are investigated.
			
            
            
            
          
        
      @article{TMF_1988_76_2_a3,
     author = {V. G. Mikhalev},
     title = {Investigation of nonlinear one-dimensional systems by means of the {Hamiltonian} formalism},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {199--206},
     publisher = {mathdoc},
     volume = {76},
     number = {2},
     year = {1988},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1988_76_2_a3/}
}
                      
                      
                    TY - JOUR AU - V. G. Mikhalev TI - Investigation of nonlinear one-dimensional systems by means of the Hamiltonian formalism JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1988 SP - 199 EP - 206 VL - 76 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1988_76_2_a3/ LA - ru ID - TMF_1988_76_2_a3 ER -
V. G. Mikhalev. Investigation of nonlinear one-dimensional systems by means of the Hamiltonian formalism. Teoretičeskaâ i matematičeskaâ fizika, Tome 76 (1988) no. 2, pp. 199-206. http://geodesic.mathdoc.fr/item/TMF_1988_76_2_a3/
