Investigation of nonlinear one-dimensional systems by means of the Hamiltonian formalism
Teoretičeskaâ i matematičeskaâ fizika, Tome 76 (1988) no. 2, pp. 199-206 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A method is proposed for investigating the solutions of the weakly perturbed sine–Gordon equation by means of action–angle variables. The Green's function of radiation on the background of many-soliton solutions is calculated in the first approximation in the amplitude. The dynamics of one- and two-soliton solutions is investigated. The Landau–Lifshitz equation (including the nonintegrable modifications) is reduced in a special case to the perturbed sine–Gordon equation. Some solutions are investigated.
@article{TMF_1988_76_2_a3,
     author = {V. G. Mikhalev},
     title = {Investigation of nonlinear one-dimensional systems by means of the {Hamiltonian} formalism},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {199--206},
     year = {1988},
     volume = {76},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1988_76_2_a3/}
}
TY  - JOUR
AU  - V. G. Mikhalev
TI  - Investigation of nonlinear one-dimensional systems by means of the Hamiltonian formalism
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1988
SP  - 199
EP  - 206
VL  - 76
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1988_76_2_a3/
LA  - ru
ID  - TMF_1988_76_2_a3
ER  - 
%0 Journal Article
%A V. G. Mikhalev
%T Investigation of nonlinear one-dimensional systems by means of the Hamiltonian formalism
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1988
%P 199-206
%V 76
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1988_76_2_a3/
%G ru
%F TMF_1988_76_2_a3
V. G. Mikhalev. Investigation of nonlinear one-dimensional systems by means of the Hamiltonian formalism. Teoretičeskaâ i matematičeskaâ fizika, Tome 76 (1988) no. 2, pp. 199-206. http://geodesic.mathdoc.fr/item/TMF_1988_76_2_a3/

[1] McLaughlin D., Scott A., Appl. Phys. Lett., 30 (1978), 545–547 | DOI | MR

[2] Karpman V. I., Maslov E. M., ZhETF, 75:2 (1978), 504–517

[3] Kaup D., Newel A., Proc. Roy. Soc. (London), A361 (1978), 413–436 | DOI

[4] Takhtadzhyan L. A., Faddeev L. D., Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | MR | Zbl

[5] Barone A., Paterno Dzh., Effekt Dzhozefsona, Mir, M., 1984

[6] Zakharov V. E., Manakov S. V., Novikov S. P., Pitaevskii L. P., Teoriya solitonov. Metod obratnoi zadachi, Nauka, M., 1980 | MR

[7] Longren K., Skott E. M. (red.), Solitony v deistvii, Mir, M., 1981 | MR

[8] Gurovich E. V., Mikhalev V. G., ZhETF, 93:10 (1987), 1293–1298

[9] Kivshar Yu. S., Kosevich A. M., FNT, 8:12 (1982), 10–16

[10] Borovik A. E., Robuk V. N., TMF, 46:3 (1981), 371–381 | MR

[11] Sklyanin E. K., On complete integrability of the Landau–Lifshitz equation, Preprint LOMI E-3-79, LOMI, L., 1979 | MR

[12] Döring W., Zs. Naturf., 3a (1948), 372–379

[13] Bulaf R., Kodri F. M. (red.), Solitony, Mir, M., 1983 | MR