Solution of linear equations in spaces of harmonic variables
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 76 (1988) no. 2, pp. 169-183
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			General solutions of linear homogeneous and inhomogeneous differential
equations of first order on the spaces $SU(N)/U_1(1)\otimes\dots\otimes U_{N-1}(1)$ parametrized by harmonic variables are obtained explicitly for arbitrary $N$. The simplest applications of the obtained results to the investigation of
$N$-extended supersymmetric gauge theory are given.
			
            
            
            
          
        
      @article{TMF_1988_76_2_a1,
     author = {I. A. Bandos},
     title = {Solution of linear equations in spaces of harmonic variables},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {169--183},
     publisher = {mathdoc},
     volume = {76},
     number = {2},
     year = {1988},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1988_76_2_a1/}
}
                      
                      
                    I. A. Bandos. Solution of linear equations in spaces of harmonic variables. Teoretičeskaâ i matematičeskaâ fizika, Tome 76 (1988) no. 2, pp. 169-183. http://geodesic.mathdoc.fr/item/TMF_1988_76_2_a1/
