Solution of linear equations in spaces of harmonic variables
Teoretičeskaâ i matematičeskaâ fizika, Tome 76 (1988) no. 2, pp. 169-183 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

General solutions of linear homogeneous and inhomogeneous differential equations of first order on the spaces $SU(N)/U_1(1)\otimes\dots\otimes U_{N-1}(1)$ parametrized by harmonic variables are obtained explicitly for arbitrary $N$. The simplest applications of the obtained results to the investigation of $N$-extended supersymmetric gauge theory are given.
@article{TMF_1988_76_2_a1,
     author = {I. A. Bandos},
     title = {Solution of linear equations in spaces of harmonic variables},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {169--183},
     year = {1988},
     volume = {76},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1988_76_2_a1/}
}
TY  - JOUR
AU  - I. A. Bandos
TI  - Solution of linear equations in spaces of harmonic variables
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1988
SP  - 169
EP  - 183
VL  - 76
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1988_76_2_a1/
LA  - ru
ID  - TMF_1988_76_2_a1
ER  - 
%0 Journal Article
%A I. A. Bandos
%T Solution of linear equations in spaces of harmonic variables
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1988
%P 169-183
%V 76
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1988_76_2_a1/
%G ru
%F TMF_1988_76_2_a1
I. A. Bandos. Solution of linear equations in spaces of harmonic variables. Teoretičeskaâ i matematičeskaâ fizika, Tome 76 (1988) no. 2, pp. 169-183. http://geodesic.mathdoc.fr/item/TMF_1988_76_2_a1/

[1] Galperin A., Ivanov E., Kalitzin S., Ogievetsky V., Sokatchev E., Unconstrained $N=2$ Matter and Supergravity Theories in Harmonic Superspace, Preprint IC/84/43, ICTP, Trieste, 1984 | MR

[2] Galperin A., Ivanov E., Kalitzin S., Ogievetsky V., Sokatchev E., Unconstrained Off-Shell $N=3$ Supersymmetric Yang–Mills Theory, Preprint E2-84-441, JINR, Dubna, 1984 | MR

[3] Ivanov S., Kalitzin S., Ai Viet N., Ogievetsky V., J. Phys. A: Math. and Gen., 18:10 (1985), 3433–3443 | DOI | MR

[4] Galperin A., Ivanov E., Ogievetsky V., Sokatchev E., Conformal Invariance in Harmonic Superspace, Preprint E2-85-363, JINR, Dubna, 1985 | MR

[5] Galperin A., Ivanov E., Ogievetcky V., Sokatchev E., Hyper Kühler Metric and Harmonic Superspace, Preprint E2-85-514, JINR, Dubna, 1985 | MR

[6] Galperin A., Ivanov E., Ogievetcky V., Townsend P. K., Eguchi–Hanson Type Metric from Harmonic Superspace, Preprint E2-85-732, JINR, Dubna, 1985 | MR

[7] Sokatchev E., Phys. Lett., 169B:2–3 (1986), 209–214 | DOI | MR

[8] Zupnik B. M., YaF, 44:3 (1986), 793–802

[9] Kallosh R., Superstrings and Harmonic Superspace, Preprint TH. 4188/85, CERN, Geneva, 1985 | MR

[10] Galperin A., Ivanov E., Ogievetsky V., Sokatchev E., Harmonic Supergraphs. Creen Functions, Preprint E2-85-127, JINR, Dubna, 1985 | MR

[11] Galperin A., Ivanov E., Ogievetsky V., Sokatchev E., Harmonic Supergraphs. Feynman Rules and Examples, Preprint E2-85-128, JINR, Dubna, 1985 | MR

[12] Sohnius M., Nucl. Phys., 136B:3 (1978), 461–474 | DOI | MR

[13] Serr Zh. P., Algebry Li i gruppy Li, Mir, M., 1969 | MR | Zbl

[14] Barut A., Ronchka R., Teoriya predstavlenii grupp i ee prilozheniya, T. 1, 2, Mir, M., 1980 | MR | Zbl

[15] Witten E., Phys. Lett., 77B:3 (1987), 394–397

[16] Rosly A., Proc. of the International Seminar on Group Theoretical Methods in Physics, V. 1, Nauka, M., 1982, 263–268