Method of $\gamma$ expansions in the electronic theory of disordered alloys
Teoretičeskaâ i matematičeskaâ fizika, Tome 76 (1988) no. 1, pp. 118-131 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the electronic theory of disordered alloys an expansion with respect to the parameter $\gamma=\exp(-1/\xi)$, where $\xi$ is the dimensionless correlation length of the single-electron Green's function, is proposed. This expansion makes it possible to take into account the presence in the alloy of short-range order and the effects of multiple scattering of the electrons by different sites. It is shown that in the case of sufficiently strong disorder $\gamma$ is a small parameter of the coherent potential approximation, and the corrections to this approximation are found. It is also shown that in the framework of this approximation the equilibrium values of the parameters of the short-range order can be calculated.
@article{TMF_1988_76_1_a9,
     author = {I. V. Masanskii and V. I. Tokar'},
     title = {Method of~$\gamma$ expansions in the electronic theory of disordered alloys},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {118--131},
     year = {1988},
     volume = {76},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1988_76_1_a9/}
}
TY  - JOUR
AU  - I. V. Masanskii
AU  - V. I. Tokar'
TI  - Method of $\gamma$ expansions in the electronic theory of disordered alloys
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1988
SP  - 118
EP  - 131
VL  - 76
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1988_76_1_a9/
LA  - ru
ID  - TMF_1988_76_1_a9
ER  - 
%0 Journal Article
%A I. V. Masanskii
%A V. I. Tokar'
%T Method of $\gamma$ expansions in the electronic theory of disordered alloys
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1988
%P 118-131
%V 76
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1988_76_1_a9/
%G ru
%F TMF_1988_76_1_a9
I. V. Masanskii; V. I. Tokar'. Method of $\gamma$ expansions in the electronic theory of disordered alloys. Teoretičeskaâ i matematičeskaâ fizika, Tome 76 (1988) no. 1, pp. 118-131. http://geodesic.mathdoc.fr/item/TMF_1988_76_1_a9/

[1] Soven P., Phys. Rev., 156:5 (1967), 809–813 | DOI

[2] Erenreikh G., Shvarts L., Elektronnaya struktura splavov, Mir, M., 1979

[3] Mills R., Ratanavararaksa P., Phys. Rev., B18:10 (1978), 5291–5308 | DOI

[4] Schwartz L., Siggia E., Phys. Rev., B5:2 (1972), 383–396 | DOI

[5] Vedyaev A. V., TMF, 31:3 (1977), 392–404

[6] Tokar V. I., Phys. Lett., 110A:9 (1985), 453–456 | DOI | MR

[7] Bekster R., Tochno reshaemye modeli v statisticheskoi mekhanike, Mir, M., 1985 | MR

[8] Vasilev A. N., Funktsionalnye metody v kvantovoi teorii polya i statistike, LGU, L., 1976

[9] Krivoglaz M. A., Diffuznoe rasseyanie rentgenovskikh luchei i neitronov na fluktuatsionnykh neodnorodnostyakh v neidealnykh kristallakh, Naukova dumka, K., 1984

[10] Ducastelle F., Treglia G., J. Phys., F10:10 (1980), 2137–2146 | DOI

[11] Ducastelle F., J. Phys., C8:20 (1975), 3297–3316

[12] Ducastelle F., Gautier F., J. Phys., F6:11 (1976), 2039–2062 | DOI

[13] Fisher I. Z., Statisticheskaya teoriya zhidkostei, Fizmatgiz, M., 1961 | Zbl

[14] Balesku R., Ravnovesnaya i neravnovesnaya statisticheskaya mekhanika, Mir, M., 1978 | MR

[15] Masanskii I. V., Tokar V. I., DAN USSR. Ser. A, 1987, no. 1, 52–56