Additional integrals of the motion of classical Hamiltonian wave systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 76 (1988) no. 1, pp. 88-99 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that a classical Hamiltonian wave system that possesses at least one additional integral of the motion with quadratic principal part has an infinite number of such integrals in the cases of both nondegenerate and degenerate dispersion laws. Conditions under which in a space of dimension $d\geqslant 2$ a system with nondegenerate dispersion law is completely integrable and its Hamiltonian can be reduced to normal form are found. In the case of a degenerate dispersion law integrals are not sufficient for complete integrability.
@article{TMF_1988_76_1_a7,
     author = {E. I. Shulman},
     title = {Additional integrals of the motion of classical {Hamiltonian} wave systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {88--99},
     year = {1988},
     volume = {76},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1988_76_1_a7/}
}
TY  - JOUR
AU  - E. I. Shulman
TI  - Additional integrals of the motion of classical Hamiltonian wave systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1988
SP  - 88
EP  - 99
VL  - 76
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1988_76_1_a7/
LA  - ru
ID  - TMF_1988_76_1_a7
ER  - 
%0 Journal Article
%A E. I. Shulman
%T Additional integrals of the motion of classical Hamiltonian wave systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1988
%P 88-99
%V 76
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1988_76_1_a7/
%G ru
%F TMF_1988_76_1_a7
E. I. Shulman. Additional integrals of the motion of classical Hamiltonian wave systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 76 (1988) no. 1, pp. 88-99. http://geodesic.mathdoc.fr/item/TMF_1988_76_1_a7/

[1] Miura R. M., J. Math. Phys., 9:4 (1968), 1202–1210 | DOI | MR

[2] Gardner C. S., Green J. M., Kruskal M. D., Miura R. M., Phys. Rev. Lett., 19:8 (1967), 1905–1908

[3] Zakharov V. E., Faddeev L. D., Funkts. analiz i ego prilozh., 5:4 (1971), 18–27 | MR | Zbl

[4] Zakharov V. E., Schulman E. I., Physica D, 1:2 (1980), 191–202 | DOI

[5] Zakharov V. E., Schulman E. I., Physica D, 4:2 (1980), 270–275 | DOI

[6] Shulman E. I., DAN SSSR, 259:3 (1981), 579–582 | MR

[7] Shulman E. I., TMF, 56:1 (1983), 131–136 | MR | Zbl

[8] Benilov E. S., Burtsev S. P., Phys. Lett., 98A:3 (1983), 256–259 | DOI | MR

[9] Zakharov V. E., Lect. Notes in Phys., 153, Springer-Verlag, Berlin–Heidelberg–New York, 1983, 190–225 | DOI | MR

[10] Zakharov V. E., Shulman E. I., DAN SSSR, 283:6 (1985), 1325–1328 | MR

[11] Zakharov V. E., Izv. vuzov. Radiofizika, 17:3 (1974), 431–453

[12] Chen H. H., Lin J.-E., Constrains in Kadomtsev–Petviashvili equation, Preprint No 82-112, University of Maryland, 1981 | MR

[13] Reiman A. G., Semenov-Tyan Shanskii M. A., Zapiski nauchn. seminarov LOMI, 133, 1984, 212–227 | MR

[14] Krichever I. M., DAN SSSR, 289:6 (1987), 1209–1212