Nonergodic behavior in the Ising model with transverse field
Teoretičeskaâ i matematičeskaâ fizika, Tome 76 (1988) no. 1, pp. 47-57
Cet article a éte moissonné depuis la source Math-Net.Ru
The mode coupling approximation is used to study the nonergodic behavior of the Ising model with transverse field in terms of the time correlation functions of the longitudinal and transverse spin components. It is shown that there exists a lower critical value of the transverse field, $\Omega=\Omega_c^0$, such that when $\Omega<\Omega_c^0$ the system is nonergodic at all temperatures, like the ordinary Ising model. For $\Omega_c^0<\Omega<\Omega_c$ ($\Omega_c$ is the upper critical value, at which the phase transition in the model disappears) nonergodic behavior appears at a temperature $T_f>T_c$, where $T_c$ is the temperature of the phase transition. The interval of nonergodicity contracts, $T_f-T_c\to 0$, as $\Omega\to\Omega_c$, and $T_f-T_c\to\infty$ as $\Omega\to\Omega_c^0$.
@article{TMF_1988_76_1_a3,
author = {V. L. Aksenov and M. Bobet and N. M. Plakida},
title = {Nonergodic behavior in the {Ising} model with transverse field},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {47--57},
year = {1988},
volume = {76},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1988_76_1_a3/}
}
TY - JOUR AU - V. L. Aksenov AU - M. Bobet AU - N. M. Plakida TI - Nonergodic behavior in the Ising model with transverse field JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1988 SP - 47 EP - 57 VL - 76 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_1988_76_1_a3/ LA - ru ID - TMF_1988_76_1_a3 ER -
V. L. Aksenov; M. Bobet; N. M. Plakida. Nonergodic behavior in the Ising model with transverse field. Teoretičeskaâ i matematičeskaâ fizika, Tome 76 (1988) no. 1, pp. 47-57. http://geodesic.mathdoc.fr/item/TMF_1988_76_1_a3/
[1] Stinchcombe R. B., J. Phys. C, 6:15 (1973), 2459–2524 | DOI
[2] Kubo R., J. Phys. Soc. Japan, 12:6 (1957), 570–586 | DOI | MR
[3] Aksenov V. L., Konvent G., Shraiber Yu., TMF, 38:3 (1979), 388–398 | MR
[4] Dagonnier R., Dumont M., J. Stat. Phys., 24:1 (1981), 59–68 | DOI | MR
[5] Aksenov V. L., Bobeth M., Plakida N. M., Schreiber J., J. Phys. C, 20:1 (1987), 375–386 | DOI
[6] Tserkovnikov Yu. A., TMF, 49:2 (1981), 219–233 ; 50:2 (1982), 261–271 | MR | MR
[7] Aksenov V. L., Bobeth M., Plakida N. M., Ferroelectrics, 72:1–4 (1987), 257–272 | DOI
[8] Gotze W., Z. Phys. B, 60:2–4 (1985), 195–204 | DOI
[9] Fischer M. E., J. Math. Phys., 4 (1963), 124–133 | DOI
[10] Allan G. A. T., Betts D. C., Canad. J. Phys., 46:1 (1968), 15–23 | DOI