Classical solution of the equations of motion in the quantum theory of Fermi fields
Teoretičeskaâ i matematičeskaâ fizika, Tome 76 (1988) no. 1, pp. 31-46 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A study is made of the behavior of a quantum-field Fermi–Bose system in the neighborhood of a classical solution of the equations of motion that contains both a boson and a spinor component with the latter being treated as a Grassmann background component of the fermion field. The conditions under which such an interpretation of a classical spinor field is possible is made. It is shown that when these conditions are satisfied such a component describes a phase with spontaneously broken charge symmetry and elements of dynamical supersymmetry.
@article{TMF_1988_76_1_a2,
     author = {K. A. Sveshnikov},
     title = {Classical solution of the equations of motion in the quantum theory of {Fermi} fields},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {31--46},
     year = {1988},
     volume = {76},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1988_76_1_a2/}
}
TY  - JOUR
AU  - K. A. Sveshnikov
TI  - Classical solution of the equations of motion in the quantum theory of Fermi fields
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1988
SP  - 31
EP  - 46
VL  - 76
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1988_76_1_a2/
LA  - ru
ID  - TMF_1988_76_1_a2
ER  - 
%0 Journal Article
%A K. A. Sveshnikov
%T Classical solution of the equations of motion in the quantum theory of Fermi fields
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1988
%P 31-46
%V 76
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1988_76_1_a2/
%G ru
%F TMF_1988_76_1_a2
K. A. Sveshnikov. Classical solution of the equations of motion in the quantum theory of Fermi fields. Teoretičeskaâ i matematičeskaâ fizika, Tome 76 (1988) no. 1, pp. 31-46. http://geodesic.mathdoc.fr/item/TMF_1988_76_1_a2/

[1] Jackiw R., Rebbi C., Phys. Rev. D, 13:12 (1976), 3398–3410 ; Niemi A. J., Semenoff G. W., Phys. Rep. C, 135:2 (1986), 99–193 | DOI | MR | DOI | MR

[2] Bogolyubov N. N., Medvedev B. V., Polivanov M. K., Nauchn. dokl. vysshei shkoly. Ser. fiz.-matem. nauki, 1:2 (1958), 137–151 ; Barut A. O., Grawford J., Phys. Rev. D, 27:10 (1983), 2493–2499 | MR | DOI

[3] Sveshnikov K. A., TMF, 75:2, 218–225 | MR

[4] Garbaczewski P., Nucl. Phys., B218:3 (1983), 321–332 ; J. Math. Phys., 26:3 (1985), 490–499 ; Aratyn H., Nucl. Phys., B227:1 (1983), 172–188 | DOI | MR | DOI | MR | DOI | MR

[5] Rañada A. F., Phys. Rev. D, 33:6 (1986), 1714–1717 | DOI

[6] Fushchich W. I., Shtelen W. M., J. Phys. A, 16:2 (1983), 271–274 ; Fushchich W. I., Shtelen W. M., Zhdanov R. S., Phys. Lett. B, 159:2–3 (1985), 189–191 | DOI | MR | DOI | MR

[7] Semenoff G., Matsumoto H., Umezawa H., Phys. Lett., 113B:3 (1983), 371–314 ; Midorikawa S., Phys. Lett., 138B:1 (1984), 111–113 | DOI | MR

[8] Sveshnikov K. A., TMF, 74:3 (1988), 373–391 | MR

[9] Jackiw R., Schriffer J. R., Nucl. Phys. B, 190 [FS3] (1981), 253–266 | DOI | MR